
Selective Validations for Efficient Protections on
Coarse-Grained Reconfigurable Architectures

Jihoon Kang

The Graduate School
Yonsei University

Department of Computer Science

Selective Validations for Efficient Protections on
Coarse-Grained Reconfigurable Architectures

A Masters Thesis
Submitted to the Department of Computer Science

and the Graduate School of Yonsei University
in partial fulfillment of the

requirements for the degree of
Master of Science

Jihoon Kang

June 2013

This certifies that the masters thesis of Jihoon Kang is approved.

Thesis Supervisor: Kyoungwoo Lee

Thesis Committee Member #1: Yosub Han

Thesis Committee Member #2: Bernd Burgstaller

The Graduate School
Yonsei University

June 2013

Table of Contents

Abstract 5

. Introduction 6

. Related Work 16

. Motivation 22

. Our Approach 25

 A. Selective Validation Mechanism 25

 B. Compilation Flow and Performance Analysis 30

C. Fault Coverage Analysis 33

 D. Our Optimization : Minimizing Store Operation 36

. Evaluations 38

 A. Experimental Setup 38

 B. Experimental Results 41

1) Effectiveness of Selective Validations 41

 2) Enhanced Effectiveness with Optimizations 46

. Conclusion 52

References 53

Abstract

Selective Validations for Efficient Protections on
Coarse-Grained Reconfigurable Architectures

 Jihoon Kang
Dept. of Computer Science

The Graduate School
Yonsei University

 Coarse-Grained Reconfigurable Architectures or CGRAs are drawing significant
attention since they promise both performance with parallelism and flexibility with
reconfiguration. Soft errors or transient faults are becoming a serious design concern in
embedded systems including CGRAs since soft error rate is increasing exponentially as
technology scaling. A recently proposed software-based technique with TMR (Triple
Modular Redundancy) implemented on CGRAs incurs extreme performance overhead
mainly due to expensive voting mechanisms for the outputs from the triplication of
every operation and energy consumption. In this thesis, we propose selective validation
mechanisms for efficient modular redundancy techniques in the datapaths on CGRAs.
Our techniques selectively validate the results at synchronous operations rather than
every operation in order to reduce the expensive performance overhead from the
validation mechanism. We also present an optimization technique to further improve the
performance and the energy consumption by minimizing synchronous operations where
validating mechanism needs to be applied. Our experimental results demonstrate that our
selective validation based TMR technique with our optimization on CGRAs can improve
the performance by 41.0% and the energy consumption by 26.2% on average over
benchmarks as compared to the recently proposed software-based TMR technique with
the full validation.

빲빲빲
Keywords : CGRA, Soft Error, Selective, Reliability, Error Protection, DFG(Data Flow
Graph), Validation, TMR, Mapping, Fault Coverage

I. Introduction

 Coarse-Grained Reconfigurable Architecture or CGRA is receiving lots of attentions. It
is necessary to achieve not only high performance but also power efficiency in recent
embedded systems. CGRA is in general composed of grid based processing elements
(PEs) and each PE consists of a FU (Functional Unit) and a few registers as shown in
Figure 1. CGRA is a promising alternative as an accelerator since this simple
architecture can improve the performance massively by executing application loop
kernels on PEs in parallel with the inherent efficacy of power consumption. Further,
CGRA is programmable, i.e., able to reconfigure architectures by switching CGRA
configuration for a new application in the short amount of time. Thus, CGRAs have
been used to accelerate complex applications where high performance is required with
the power efficiency [1], [2].

Fig. 1. CGRA (4 × 4) architecture (Example)

 Soft error and its concern are on significant increase in embedded system designs.
Several decades of technology scaling has brought us where transistors are extremely
susceptible to even small fluctuations in supply voltage levels, slight noise in the power,
signal interference, and even induced radiation [3], [4], [5]. Any of these effects can
temporarily toggle the logic value of a transistor, so it is called a transient fault or soft
error as shown in Figure 2.

(a) Soft Error [37]

(b) SER is increase as the technology scaling [38]

Fig. 2. Concept of soft error and its concerning

 Soft errors induced by terrestrial radiation are becoming a significant concern in
architectures designed in newer technologies. If left undetected, these errors can result in
catastrophic consequences or costly maintenance problems in different embedded
applications. When high energy neutrons such as terrestrial cosmic radiation, alpha
particles that originate from impurities in the packaging materials, strike a sensitive
region in a semiconductor device, they generate a dense local track of electron hole
pairs. This may be collected by a p-n junction resulting in a current pulse of very short
duration termed a single event upset (SEU) in the signal value. A SEU may cause a bit
flip in some latch or memory element thereby altering the state of the system resulting
in a soft error. Additionally, a SEU may occur in an internal node of combinational
logic and subsequently propagate to and be captured in a latch. Soft errors in memories
(both static and dynamic) have traditionally been a much greater concern than soft
errors in logic circuits since memories contain by far the largest number and density of
bits susceptible to particle strikes. Soft errors will be an increasing burden for embedded
system designers as the number of on-chip transistors continues to grow exponentially.
The raw error rate per latch or SRAM bit is projected to remain roughly constant or
decrease slightly for the next several technology generations. Thus, unless we add error
protection mechanisms or use a more robust technology, a microprocessor's error rate
will grow in direct proportion to the number of devices we add to a processor in each
succeeding generation However, error correction is expensive in terms of power
consumption and performance overhead.

 Such a soft error is not permanent and non-destructive, i.e., resetting the device can
resume the normal operation. However, a single soft error can be as critical as a
permanent error. Indeed, soft errors have been already revealed to cause significant
fiscal damages [6], [7], [8]. For instance, SUN blamed soft errors for the crash of their
million-dollar line SUN flagship [7] as shown in Figure 3 and Hewlett Packard
acknowledged that a large installed base of a 1024-CPU server system in Los Alamos
National Laboratory has been crashing [8] due to soft errors caused by cosmic ray and
energetic particle. Further, abrupt unattended acceleration of vehicle of Toyota might be
caused by soft errors induced by comic ray [29] as shown in Figure 4. As the
popularity of CGRA usages is increasing on many embedded applications such as
human health systems, automobiles, airplanes, and data server systems [9], a single soft
error may lead to catastrophic consequence, and even a human life as shown in Figure 5.

Fig. 3. Sun flagship server (example, not directly related) [39]

Fig. 4. Unintended acceleration of Toyota PRIUS [40]

(a) Explosion of Fukushima Daiichi nuclear power plant [41]

(b) Soft error of implanted devices [42]

(c) Human can depend on medical devices [43]

(d) Airplane can be used widely close to human life [44]

(e) Vehicle engine control unit is becoming an important issue [45]

Fig. 5. Soft errors can lead to catastrophic consequences in embedded systems

 Soft-errors are protected by error detection and correction codes (EDC and ECC).
However, soft errors in logics are becoming also critical and take up more than 50% in
overall soft errors in embedded systems [31]. Thus, researchers have presented several
redundancy based techniques at various levels of design space abstraction, based on dual
modular redundancy (DMR), triple modular redundancy, and check pointing. However,
these redundancy techniques without optimization incur high overheads in terms of
power, performance, and area. For example, TMR typically uses three functionally
equivalent replicas of a logic circuit and a majority voter, but the overheads of
hardware and power for conventional TMR exceed 200% [32]. [33] has been proposed a
systematic approach for automatically introducing data and code redundancy into an
existing program written using a high level language. The transformations aim at making
the program able to detect most of the soft errors aecting data and code, independently
of the Error Detection Mechanisms (EDMs) possibly implemented by the hardware. In
[34], a new paradigm for designing logic circuits with concurrent error detection (CED)
is described. The key idea is to exploit the asymmetric soft error susceptibility of nodes
in a logic circuit. Rather than target all modeled faults, CED is targeted towards the
nodes that have the highest soft error susceptibility to achieve cost effective tradeoffs
between overhead and reduction in the soft error failure rate. Under this new paradigm,
propose one particular approach that is based on partial duplication and show that it is
capable of reducing the soft error failure rate significantly with a fraction of the
overhead required for full duplication.

 Figure 6 illustrates the possible outcomes of a single-bit fault. Outcomes labeled 1-3
indicate non-error conditions. The most insidious form of error is silent data corruption
(SDC) (outcome 4), where a fault induces the system to generate erroneous outputs. To
avoid SDC, designers often employ basic error detection mechanisms, such as parity.
With the ability to detect a fault but not correct it, we avoid generating incorrect
outputs, but cannot recover when an error occurs. In other words, simple error detection
does not reduce the error rate, but does provide fail-stop behavior and thereby avoids
any data corruption. We call errors in this category detected unrecoverable errors
(DUE). We subdivide DUE events according to whether the detected error would affect
the final outcome of the execution. We call benign detected errors false DUE events
(outcome 5 in Figure 6 and others true DUE events (outcome 6). In most situations, it
is impossible for a processor to determine at the time an error is detected whether it is
benign. The conservative approach is to signal all detected errors as processor failures.
A direct approach to reducing error rates involves adding error correction or recovery
mechanisms to a design, eliminating outcomes 3 through 6 from Figure 6.
Unfortunately, these mechanisms come at a significant cost in power, performance, and
area [35]. In [36], present two low overhead techniques that provide scalable fault
coverage as a function of the available area and power budgets. The first technique
introduce the register value cache, an architectural mechanism, that provides twice the
fault coverage of ECC when applied to the register le and costs less to implement in
terms of both area and power. The second technique present makes use of time delayed
shadow latches for fault detection. It identifies high fan-in nodes in the microprocessor
core for placing these detectors and achieves up to 40% fault coverage. In conjunction,
the two proposed fault tolerance techniques can provide approximately 84% fault
coverage while incurring less than 5.5% area overhead and about 14% power overhead.

 To make CGRAs robust against soft errors, several hardware based techniques have
been proposed [9], [10], [11], [12], but they are expensive in terms of area, power, and
performance. Most of hardware based techniques modify existing architectures to
implement redundancy based DMR [13] and TMR [14] and they incur high costs in
every design aspect. To resolve these drawbacks from hardware based techniques,
researchers move attention to software based techniques that are of no area overhead
[15], [16]. Recently, an interesting software based technique has been proposed but it
still incurs high performance overhead mainly due to expensive voting and comparison
mechanisms of TMR and DMR, respectively [16]. In fact, Lee et al. [16] has
demonstrated that software implemented TMR and DMR on 6X8 CGRAs incur up to
700% and 167% performance overheads, respectively.

 In order to address soft error resilient CGRAs with the least performance overhead,
we propose software implemented redundancy techniques on CGRAs with selective
validation mechanisms. First, we identify the expensiveness of validation mechanisms for
TMR and DMR on CGRAs, respectively. Indeed, the voting overhead takes up
approximately 62.5% of the total overhead in TMR and it is true since CGRAs are
good at data intensive computation rather than control intensive computation such as
voting operations [16]. Second, we present selective validation schemes for software
based TMR and DMR on CGRAs rather than the complete validation. The main idea
behind our proposals is to selectively apply voting mechanisms just before synchronous
points where applications can be affected by corrupt data induced by soft errors and fail
to deliver the correct results. Also, we present the comparable fault coverage of our
approach as compared to the previously proposed software-based TMR technique with
the full voting on CGRAs. In addition, we propose an optimization technique to reduce
the synchronous points so that we can further reduce the performance overhead due to
the complex voting by decreasing the number of voting mechanisms.

Fig. 6. Classification of possible outcomes of a faulty bit in a microprocessor
(SDC = silent data corruption. DUE = detected unrecoverable error)

The contribution and results of this work include :

Our software based TMR technique with the selective voting can improve the
runtime by 38.3% and the energy consumption by 18.1% on average over benchmarks
as compared to a previously proposed TMR technique with the full voting.

Our software based DMR with the selective comparison can improve the runtime by
14.3% and the energy consumption by 3.6% on average over benchmarks as compared
to a previously proposed DMR technique with the full comparison.

Our optimization techniques can further improve the runtime by 41.0% and the
energy consumption by 26.2% as compared to a previously proposed TMR technique
with the full voting mechanism and by 17.8% and 14.0%, respectively, as compared to
a previously proposed DMR technique with the full comparison mechanism by
minimizing the occurrence of the validations with the loop unrolling scheme.

Our software based protection techniques with the selective validation mechanism
show the fault coverage as comparable as recent proposals with the full voting
mechanism by quantitative analysis.

. Related Work

 Soft errors are becoming a critical design concern as technology scaling continues and
CGRA is being employed in critical applications such as aircrafts, space missions, and
financial systems [9]. Thus, the reliability on CGRAs against soft errors is emerging as
an important research topic but the literature is relatively small. Most of these studies
proposed redundancy techniques such as DMR and TMR by exploiting identical blocks
or processing elements for the replications to protect the datapaths on CGRAs against
soft errors.

 Previously proposed fault tolerant techniques for CGRA are widely classified with
hardware and software based techniques as shown in Table 1. Hardware based
techniques (grey shade ones in Table 1) incur significant area overhead for
implementing fault tolerant techniques. To resolve this area overhead, software based
techniques (yellow shade ones in Table 1) that is not occurred area overhead are
propose. Although software based techniques reduce the area overhead, they incur
performance overhead.

 Alnajiar et al. [10] proposed dynamic operation modes in CGRA architecture to
provide the various levels of reliability under the performance constraint. However, their
technique incurs 26.6% area overhead mainly due to additional hardware redundancy and
causes performance degradation because cluster-based architectures cannot fully use
hardware resources. To reduce this hardware overhead, Jafri et al. [9] presented an
alternative hardware-based redundancy technique, residue mode less costly than DMR to
detect soft errors. They implemented self-checking residue mode for multiplication and
addition operations on DART architecture [17], but it cannot be applied to logical
operations. Recently, Eisenhardt et al. [18] proposed the remapping engine process
designed and suitable for permanent faults, not soft errors.

 On the other hand, researchers have investigated different approaches from the
previously proposed techniques that redesign and modify architectures of processing
elements on CGRAs to reduce the hardware cost. Kim et al. [19] observed that not all
processing elements are exploited at the execution time mainly because some of
processing elements are used for the routing of operands between producing and
consuming operations. Based on this observation, Schweizer et al. [12] proposed
techniques exploiting unused FUs for replications to increase the reliability with the
minimal hardware overhead as illustrated in Figure 7. They proposed FEHM (Flexible

Error Handling Module) that supports DMR and TMR schemes on specific target
architectures as illustrated in Figure 7(a). However, data intensive application cannot
map all the operations to processing elements due to insufficient unused FUs and their
experimental results show that there are still significant area overhead as illustrated in
Figure 7(b). To resolve this limitation, they introduced multiple contexts to be mapped
on CGRA by using the concept of temporal redundancy [11]. However, the increased
number of the contexts incurs 12% performance degradation and there still remains
unresolved hardware overhead. In short, previously proposed hardware based techniques
incur additional area cost since they need to modify existing CGRA architectures to
implement redundancy techniques such as TMR and DMR.

[Paper] & Key Idea Experiment drawback & Comment
Alnajiar et al. [10]

dynamic operation modes in

CGRA architecture to provide

the various levels of reliability

under the performance

constraint.

set

up

- compare to the number of

gate (using tool : RTL)
- flexible protection mechanism

- area-overhead

 (implement voter)

- performance degradation

 (cant use resource fully)

result - area : 26.6% increase

Jafri et al. [9]

self-checking residue mode for

multiplication and addition

operations on DART

architecture

set

up

- compare to original FU, DMR

FU and self-checkingFU

- less area overhead

- area-overhead

 (implement self-checking)

- performance degradation

- only detection

- not cover specific fault

result

- area : 18% decrease compare

to DMR

- performance : 400% decrease

compare to DMR

Schweizer et al. [12]

exploiting unused FUs for

replications to increase the

reliability with the minimal

hardware overhead.

FEHM (Flexible Error Handling

Module) - supports DMR and

TMR schemes.

set

up

- compare to TMR and

Clustering PE include FEHM
- supports DMR and TMR

schemes with modified FEHM

- considering power

- area-overhead

 (implement FEHM)

- cant apply to data intensive

 application

result

- area : 12.8% decrease

compare to TMR

-power : 1.6~18.6%decrease

compare to TMR

Schweizer et al. [11]

to resolve previous ([Schweizer,

2011]) limitation, multiple

contexts to be mapped on

CGRA by using the concept of

temporal Redundancy

set

up

- mapping to CGRA usedFFT

application

- estimate required area as

context memory is increased

- Estimate time between read

and store

- enable to apply permanent,

transient, timing fault

- enable to apply any

application

- performance degradation

compare to TMR (increase

context)

- still exits area-overhead
result

- area : 31% decrease compare

to TMR

- performance: NR/TMR

26%/12% decrease

K. Singh et al. [15]

Selective apply combined

scheme to code that can

cause a soft error.

set

up

- reliability is the percentage of

time that FT matrix

multiplication can run on raw

architecture without system

reset

- no area overhead

(sw-based technique)

- limited RAW architecture

- performance overhead

- not consider TMR voting
result

- reliability : 89.2%

 (108out of 1000 reset)

Lee et al. [16]

replication &voter is

implemented on PE to reduce

area overhead;to reduce the

critical path, addconditional

execution & column wide

bus;thermal impactoptimal

mapping on PE is proposed.

set

up

- comparebase arch with

proposed arch based on RTL

- ACS

(time consuming operations)

module in viterbi decoder map

CGRA

- software technique

- area-efficiency

(minimal hardware overhead)

- performance overhead

(replication& voter map on PE)

result

- area : 12% increase compare

to base

- performance: decrease

TMR(700%)/DMR(167%)

Table 1. Previously proposed techniques for CGRAs

(a) FEHM (Flexible Error Handling Module)

(b) Experimental results

Fig. 7. Hardware based techniques for fault tolerant CGRAs [12]

 In order to overcome this area overhead, recent researchers have investigated software
based techniques to implement redundancy techniques without hardware modifications
[15], [16]. Singh et al. [15] presented fault tolerance techniques for an existing Raw
architecture [20] by exploiting the selective redundancy and checkpoint schemes.
However, their scheme is inapplicable to any CGRA architecture since it is designated
only for RAW architecture and also causes performance degradation. As a general
software-implemented technique applicable to any CGRA architecture, Lee et al. [16]
proposed software based TMR and DMR techniques by mapping software implemented
replicas of operations and validation mechanisms onto processing elements in CGRA
architectures as shown in Figure 8. However, they still incur high performance overhead
mainly due to additionally mapped processing elements for the complex voting and
comparison mechanisms. These software techniques offer limited amount of area cost
than hardware techniques but result in significant performance degradation.

(a) Software implemented TMR techniques on CGRAs

(b) Software implemented DMR techniques on CGRAs

(c) Experimental results

Fig. 8. Software based techniques for fault tolerant CGRAs [16]

 We propose novel selective validation schemes to improve performance without any
hardware modification. Our proposals can remove the area cost by exploiting software
based techniques and fulfill the performance improvement by selectively applying the
validation mechanisms only on synchronization points before store operations. This
approach makes sense since modified outputs from processing elements (which will be
written back to the memory) can affect the application kernel and its final output at the
end unless they are fixed before the memory update [21].

. Motivation

 CGRA is essentially an array of processing elements or PEs connected through a
mesh-like or interconnection as illustrated in Figure 1. A PE generally consists of a
functional unit (e.g., ALU, shifter, multiplier, etc.) and a small register file for storing
temporary variables and constant values. The PE array consists of heterogeneous PEs
and basic operations such as arithmetic and logical operations are performed by every
PE whereas the costly operations such as multiply and memory access operations are
performed only by some PEs. Like Field-Programmable Gate Arrays (FPGAs), the
functionality of PEs and the data flow among PEs are controlled by configuration.
However, as the configuration size for CGRA is small since CGRAs are controlled in a
word-level operation, CGRAs can be reconfigured very fast, even in every cycle [22],
unlike FPGA configured in a bit-level operation.

 Figure 9 shows an example of software-implemented TMR for a kernel part. Figure
9(a) presents C-like pseudo code for the kernel part (a[i] = (b[i] - X) / Y
). To implement this kernel, the original DFG (Data-Flow Graph) is composed of load,
subtract, divide, and store operations as shown in Figure 9(b). Figure 9(c) draws its
TMR implementation as a DFG form. In this example, normal operations (except
memory operations) such as subtract and divide must be triplicated and their results are
validated by the voting mechanism. For instance, a subtract operation (the original node,
s0) is triplicated (two additional nodes s1 and s2 for the triplication) and the voting
requires three compare (vs0, vs1, and vs2), one logical and (vs3), two add (vs4 and
vs6), and one select (vs5) operations (7 additional nodes for the voting). A TMR
implementation requires 9 additional nodes per normal operation, which is translated into
the huge impact on the performance. For this simple kernel, TMR implementation has
increased the number of nodes from 4 to 22 and the number of edges from 3 to 35
(compare Figure 9(b) and Figure 9(c)). These increased numbers of nodes and edges
increase the complexity of the operations to be mapped onto PEs causing more
challenges to the compilation scheduling. Eventually, they degrade the performance due
to highly required PEs and tightly induced data dependency among them.

for (i = 0; i < iteration; i ++) {
 /* X and Y are constant */
 a[i] = (b[i] - X) / Y ;
}

(a) Example of a kernel

(b) Base (c) TMR with full voting (d) TMR with selective voting

Fig. 9. Generated DFGs of Base (No Redundancy), Software implemented TMR
with the full voting [16], and TMR with the selective voting for a kernel

 In order to observe the performance overhead of the voting mechanism, we have run
a simple experiment. First off, we have evaluated the performance in terms of runtime
for base kernels (i.e., without any redundancy) of benchmarks. Secondly, the runtime
has been estimated for software based TMR implementation on CGRA and its
performance overhead has been calculated in percentage by dividing the difference
between runtime of the base and that of the TMR by that of the base (OTMR = (RTMR

RBase) ÷ RBase where OTMR is its performance overhead, and RBase and RTMR are
runtime for the base and TMR with the full voting, respectively). Then, we have
implemented the DFGs of triplicated operations of benchmark kernels without the voting,
and evaluated the runtime and its performance overhead (OTMR_no_vote = (RTMR_no_vote

RBase) ÷ RBase where OTMR_no_vote is its performance overhead and RTMR_no_vote is
runtime for TMR without the voting.). Last, we estimate the voting overhead as the
difference between OTMR and OTMR_no_vote, and Figure 10 draws the portions of the
voting overhead (OTMR OTMR_no_vote) and the triplication overhead (OTMR_no_vote).
Figure 10 shows that the performance overhead caused by the voting mechanism in
software-implemented TMR takes up about 64.8% on average over the benchmarks. This
high performance degradation results from the high data dependency and complexity of
the voting mechanism. In this thesis, we investigate selective validation techniques to
reduce this expensive performance cost in redundancy protections on CGRAs.

Fig. 10. Runtime overhead of voting overhead takes up about 64.8% in software
implemented TMR techniques on CGRAs.

. Our Approach
A. Selective Validation Mechanism

 In order to improve the reliability with minimal performance overhead, we present the
selective validation techniques for TMR and DMR on CGRAs. Our goal is to protect
the datapath of CGRAs such as FUs from soft errors. Traditional hardware-based
protection methodologies for memory subsystem are inexpensive as compared to
maintaining double- or triple-redundant execution cores [21]. Therefore, we suppose that
memory of CGRA architectures is protected against soft errors by traditional fault
tolerant techniques such as parity check, ECC (Error Correction Code), and scrubbing.
Thus, we do not replicate the memory operations such as “load” and “store” and do not
validate the output of memory operations, which can reduce the performance overhead.

 Our main goal is to reduce the number of validations for improving performance
without losing the reliability as compared to the existing redundancy techniques. Note
that the main benefit of CGRAs is to map the kernel part of applications to accelerate
the performance that is data intensive kernel as in operations in the loop. Thus, the
control part of applications is not suitable for being mapped onto the PEs in CGRAs
since it incurs unnecessary performance overhead. Indeed, the validation mechanisms
such as the voting mechanism for TMR and the comparison for DMR are sort of
control intensive operations which are inappropriate for operations mapped onto PEs in
terms of the performance. The main idea behind our approach is to perform validation
operations just before synchronization points where the program can be affected and
result in incorrect output or even catastrophic consequences if the data is incorrect after
synchronization points [21], [23]. For example, store operations have been committed to
the memory with erroneous states and these erroneous results can eventually cause
incorrect outputs of an application. Thus, the program will be executed correctly if
corrupted data is not stored in the main memory. Indeed, the concept of this selective
validation approach has been introduced through the technique named SWIFT (Software-
Implemented Fault-Tolerant) [21], [23]. In this technique, all instructions other than
memory instructions are replicated and the validation checks are introduced only at
certain synchronization points to ensure that the data produced by the original and
replicated operations are identical or correctable. Note that their technique can achieve
the reliability by 97% of that of TMR with the full validation [23].

 Assume that the number of operations are 100 as shown in Figure 11(a). In TMR

with full voting, 300 operations are required to triplication and 700 operations are added
for voting mechanism. In short, the total number of operations we need is 2000
(300+700+300+700) as shown in Figure 11(b).
 On the other hand, 300 operations are required to triplication like Figure 11(b). and
then no operations are added for voting mechanism because our approach vote at
synchronization points such as store operation. In short, the total number of operations
we need is 1300 (300+0+300+700) as shown in Figure 11(c).

 Figure 12 is the DFG from Swim_calculation which one of the benchmark suites.
Figure 12 clearly shows efficiency of our selective validation for improving performance.
Figure 12(a) is base with no protection techniques. Figure 12(b) is TMR with full
validations. Original operations (A1, A2, A3, A4 and A5) are triplicated and voted but
ST1 is not validate because memory of CGRA architectures is protected against soft
errors by traditional fault tolerant techniques such as parity check, ECC (Error
Correction Code), and scrubbing. However our selective validation techniques as shown
in Figure 12(c) check the validations only at certain synchronization points(ST2) to
ensure that the data produced by the original and replicated operations are identical or
correctable. Selective validation techques incur less performance overhead than
conventional TMR technique.

(a) Base (b) TMR with full voting

(c) TMR with selective voting

Fig. 11. Examples of reducing expensive voting

(a) Base
in Swim_calculation benchmark

(b) TMR with full voting
in Swim_calculation benchmark

(c) TMR with selective voting in Swim_calculation benchmark

Fig. 12. Expensive Voting mechanisms (Benchmark: Swim_calculation)

B. Compilation Flow and Performance Analysis

 Figure 13 shows the overall compilation flow for a system including CGRA as an
accelerator or coprocessor. First, an application is partitioned to extract kernels to be
mapped onto CGRAs. Then, the extracted kernels are compiled for CGRA while the
rest of the code, i.e., sequential code, goes through the conventional compilation
process. CGRA compilation starts from constructing the DFG of a loop. After that,
modulo scheduler takes the DFG as an input to generate a valid mapping result for
executing the loop on CGRA. Modulo scheduling [24] is a software pipelining technique
that exploits the parallelism by overlapping consecutive iterations of the loop. The goal
is to find a valid schedule with a minimized initiation interval (II), which is the
difference between the start times of successive iterations. Minimizing the II leads to
the throughput improvement since one loop iteration takes II cycles ignoring the effects
of prologue and epilogue of the loop. Modulo scheduler first initializes the II by taking
the maximum out of the resource-constrained lower bound (ResMII) and the
recurrence-constrained lower bound (RecMII). It then attempts to generate a valid
schedule within the minimal II. If no valid schedule can be found for the given II, the
scheduler increments II by one and attempts again until a valid schedule is achieved.

Fig. 13. Compilation flow for a system with CGRA

 Figure 9 shows the generated DFGs through this compilation flow for the original
code (Figure 9(b)), for the TMR code with the full validation (Figure 9(c)), and for the
TMR code with the selective validation (Figure 9(d)). Our TMR with the selective
validation introduces just one validation computation as shown in Figure 9(d) while
TMR with the full validation introduces two validation computations as shown in Figure
9(c). Thus, we can reduce one set of operations for the validation after the triplicated
operation (subtract operation in this example), and this reduction can improve the
performance.

 Figure 13 illustrates the effectiveness of selective voting technique in terms of II and
the utilization with a mapping example. Each DFG is scheduled onto a 4 × 4 CGRA
according to compilation flow in Figure 13. In the scheduled results, the ID at each
cell in Figure 14 indicates the mapping of an operation from the DFG as shown in
Figure 9. For instance, ‘s0’ is scheduled onto PE 9 at the cycle 4 in Figure 14(a). The
IDs followed by ‘r’ (e.g., ‘vs0r’) indicate routing operations for the corresponding
computation operations. For example, ‘vs0r’ is scheduled onto PE 4 and at the cycle 6
in Figure 14(a) for the routing of ‘vs0’. Slots marked with ‘X’ represent ones occupied
due to the modulo constraint. Assume that the latency of a load operation is three
cycles and other operations one cycle in our scheduling framework. Figure 14(a) shows
the scheduling result for TMR with the full voting consisting of 22 nodes and 35 edges
from the DFG in Figure 9(c), and its performance output with II=4. However, our
selective voting technique can construct the DFG with less nodes and edges (15 nodes
and 21 edges from Figure 9(d)) and thus the II from the scheduled result is equal to 2
(as shown in Figure 14(b)), which can be interpreted about 2 times improvement in
performance since the performance is roughly proportional to the II. Interestingly, we
can utilize the PEs of CGRA approximately 2 times more efficiently with the selective
voting than the full voting. Note that the better utilization can avoid unnecessary waste
of CGRA resources and lead to the performance efficiency. Therefore, our selective
voting technique can improve II and archive high utilization ratio due to the reduced
number of nodes and edges. The number of nodes and edges in the DFG affects
several aspects as follows. First, the number of nodes implies the least required number
of PEs in CGRA architectures. Second, the increased number of edges in general raises
the data dependency among connected PEs. Our selective validation techniques can
improve the performance with the reduced II by decreasing the number of nodes and
edges in the DFG and by exploiting the unused FUs efficiently by reducing the data
dependency.

(a) TMR Implementation with full voting from Figure 9(c)

(b) TMR Implementation with selective voting from Figure 9(d)

Fig. 14. Mapping operations for software implemented TMR onto CGRAs

C. Fault Coverage Analysis

 Our redundancy techniques with the selective validations on CGRAs can achieve the
comparable reliability in terms of the fault coverage as compared to the redundancy
techniques with the full validations. Fault coverage can be defined as the ratio of the
detected number of faults to the total number of faults. Suppose that the fault coverage
of considering both single bit soft errors and multiple bit soft errors is FC = α *
FCSBSE + β * FCMBSE where FCSBSE is the fault coverage for single bit soft errors,
FCMBSE is the fault coverage for multiple bit soft errors, and and are weight constants
for FCSBSE and FCMBSE, respectively. If we consider a single bit error for the whole
operation of the kernel, FCSBSE for TMR with the selective validation is equal to that
for TMR with the full validation since a soft error induced incorrect value will be
eventually corrected at the synchronous point by the validation, which does not cause
data corruption or system failure. Thus, when α is set to 1 and β is set to 0, FC for
our technique is the same as that for a conventional TMR technique.

 On the other hand, if we consider double bit soft errors as multiple ones, which has
extremely lower error rate than single bit soft error (100 times less [25]), 4 cases should
be taken into account for the fault coverage analysis as described in Figure 15. The first
case is that double bit errors occur at the same operation in the datapath at the same
cycle as shown in Figure 15(a). These errors should be fixed by both techniques, i.e.,
our selective validation and the full validation since no erroneous datapaths in nodes s1
and d1, and s2 and d2 will mask the error propagated to d0 from s0 at Vd in our
selective validation as shown in Figure 15(a). Thus, the first case results in the same
fault coverage. The second case is that double bit errors occur at different operations in
the same datapath at different cycles (Figure 15(b)) and then these errors also can be
fixed by both techniques since operations at the other datapaths will be executed
correctly without errors. Thus, the second case also results in the same fault coverage.
The third case is that double bit errors occur at the same operations in two different
datapaths at the same cycle (Figure 15(c)) and then these errors cannot be validated by
both techniques since the 2-out-of-3 voting may not work to mask these errors. Thus,
the third case results in the same missed fault coverage. The last case is that double bit
errors occur at different operations in two different datapaths at different cycles (Figure
15(d)) and then these errors will be corrected by the full validation (since each single
bit error can be fixed just after each operation has been committed) but these errors
may not be masked by the selective validation. Thus, the last case results in the loss of
the fault coverage for the selective validation. Thus, when α is set to 0 and β is set to
1, FC for our technique is worse than FC for TMR with the full validation on CGRAs.

(a) Case 1: Two soft errors in ’s0’ (b) Case 2: One soft error in ’s0’ and
one soft error in ’d0’

(c) Case 3: One soft error in ’s0’
and one soft error in ’s1’

(d) Case 4: One soft error in ’s0’ and
one soft error in ’d1’

Fig. 15. Fault coverage analysis of software implemented TMRs in case of
double soft errors (Shaded nodes and edges indicate no executions in case of
uncorrectable validations at (c) and (d))

 Assume that double bit soft error rate is considered 100 times less than single bit
soft error rate. If we suppose that all multiple bit soft errors are double bit soft errors
and the last case (worse fault coverage case for our technique) takes up the whole
possibility out of four cases, the FC for the selective validation is less than 1% than
that for the full validation in TMR, which is the upper bound of the worse fault
coverage for our case even in considering various weight constants between 0 and 1 for
α and β. In conclusion, our technique can achieve the same fault coverage for single
bit soft errors and the comparable fault coverage for multiple bit soft errors (at most
1% worse with the current ratio of single bit soft errors to double bit soft errors) as
compared to the previously proposed TMR techniques with the full validation. Note that
our fault coverage analysis excludes the cases where soft errors occur on the PEs for
the validation mechanisms together. However, an error at the validation cannot guarantee
the reliability for both the full and selective validation techniques.

D. Our Optimization : Minimizing Store Operation

 To further improve the performance, our optimization technique merges multiple store
operations into one store operation by applying the loop unrolling and modifying the
DFG. As illustrated in Figure 16, the original loop unrolling can duplicate the DFG to
improve the performance. Assume that the data in the same array are stored in adjacent
addresses in the memory. Our idea is that the data in adjacent locations will be stored
at one access after merging two store operations into one by applying shift and add
operations. For example, a[0] is set to 0x12 and a[1] is set to 0x34 in our example as
shown in Figure 16(a). If the unit size of an array in this example is 1 byte while the
variables are of two bytes, a[0] will be shifted by 8. And then a[1] (0x0034) will be
added to this shifted value of a[0] (0x1200). Finally, the sum of a[0] and a[1] (i.e.,
0x1234) will be stored by just one store operation as shown in a form of the DFG in
Figure 16(c).

 After applying our optimization technique, the number of store operations can be
halved. Therefore, the number of validations also can be reduced in a half so it can
improve performance. However, there are two limitations in our optimization technique.
First, our optimization requires additional PEs for mapping operations such as shift and
add operations. However, the number of PEs required by the voting mechanism that is
7 greater than that of these additional PEs. Second, our optimization introduces the
dependency between unrolled loops. In the original loop unrolling, each unrolled loop
can be executed in parallel. In contrast, our approach requires the sum total between the
results of these unrolled loops. Therefore, our optimization techniques must be
considered with unrolling factors that are number of copied loop kernel. However,
determining the unrolling factor with considering CGRA architectures and property of
kernels is beyond our scope. Since software-implemented voting requires much more
additional nodes than comparison, our optimization technique has the strength in
triplication case, rather than duplication.

 Note that our optimization techniques cannot be applicable for the kernel that has
recurrent loops. The output of the previous iteration is required as the input of current
iteration, so it cannot be stored at the same time. If our CGRA architecture exploits the
reuse edge proposed in [26], the output of previous data can be used before store
operation. However, it must be required the performance overhead tradeoff between
voting and exploiting reuse edge techniques. The optimization techniques for recurrent
loops are definitely one of our future works.

for (i = 0; i < iteration; i += 2) {
 /* X and Y are constants */
 a[i] = (b[i] - X) / Y ;
 a[i+1] = (b[i+1] - X) / Y ;
}

(a) Example of a kernel

(b) Conventional loop unrolling (c) Modified loop unrolling

Fig. 16. Generated DFGs of our optimization technique with the loop
unrolling

. Evaluations
A. Experimental Setup

 To evaluate the effectiveness of our selective protection and optimization techniques,
we have implemented a simulation framework. For the target architecture, we consider a
CGRA that is close to the one illustrated in Figure 1. It contains a 4 × 4 PE array
consisting of 4 multiplier PEs, 8 normal operations PEs, and 4 load-store PEs. Our
CGRA has no shared register file, but each PE has its own register file whose entry
size is 8. The local registers are used for scalar variables or routing temporary data.
Each PE is connected to its four neighbor PEs, four diagonal ones and 2-hop straight
ones. These CGRA configuration is the input to our framework as shown in Figure 17.

Fig. 17. Our Simulation Framework

 We have taken important loops as our benchmark suite from multimedia benchmarks,
OpenCV benchmarks [27] and SPEC 2000 benchmarks [28]. DFG generator creates a
DFG for each benchmark kernel and this DFG information is an input to our compiler
and scheduler with an initial II. Mapping and routing information of benchmarks onto
CGRAs are generated using a version of modulo scheduling [26]. Due to the
randomness in the cost-based scheduling algorithm (as there is more than one minimum
cost candidate), we compile and simulate each benchmark kernel ten times and the
result having minimum II among 10 trials is taken as the representative performance for
that benchmark. Our experimental framework also returns the runtime in cycles with the
minimum II.

 The runtime is estimated as the sum of the prologue runtime, the kernel runtime, and
the epilogue runtime. The prologue runtime RP and the epilogue runtime RE are the
execution times before and after the kernel execution, respectively, and they are equal

to (s 1) × II where II is the minimum II and s is the number of stages from our
simulations. The kernel runtime RK is calculated as (i s + 1) × II where i is the
number of iterations for the benchmark loop. The number of iterations for the store
reduction i´ is calculated as I / 2 because two operations are merged by loop unrolling
as shown in Figure 16. The total runtime R is represented as RP + RK + RE.

Table 2. CGRA Power Parameters

Module Variable Power Dissipation (mW)

Active PE (ALU) PALU 2.543

Active PE (Multiplication) PMUL 3.200

Active PE (Division) PDIV 3.465

Active PE (Routing only) PROUT 0.847

Idle PE PIDLE 0.254

The rest part of PE array PREST 25.988

Memory bank access PMEM 270.030

Configuration cache access PCONF 34.837

PE : Processing Element

 Table 2 shows variables and dissipation values of the power for parameters [30]. For
estimating the energy consumption, we need the number of each kind of node because
it is the power per each node. Figure 18(a) is an example of loop level paralleled
scheduling for CGRA when the number of stage is 4 and the iterations are 100. We
can count the number of each kind of node in the kernel part for given II from the
mapping results. In the prologue and epilogue parts, we can also count the number of
each node in the same way by uniting the prologue and the epilogue as shown in
Figure 18(b). The energy consumption is estimated as the sum of energy consumption
for the prologue, that for the kernel, and that for the epilogue. Table 2 shows variables
and dissipation values of the power for parameters. The sum of energy consumption for
the prologue and that for the epilogue, EPE is equal to (s 1) × [m ONm × Pm +
NIDLEPE × PIDLE + 2 × II × (PREST + PCONF)] where O is a set of CGRA
operations which is { ALU; MUL; DIV; ROUT; MEM }, Nm is the number of nodes
for m operation, for example, NALU is the number of nodes for arithmetic and logic
operation and NIDLEPE is the number of nodes for idle nodes in the prologue and the
epilogue. The kernel energy consumption EK is equal to (i s + 1) × [m ONm ×

Pm + NIDLEk × PIDLE + II × (PREST + PCONF)] where NIDLEk is the number of
nodes for idle nodes in the kernel. The number of iterations for the store reduction i´ is
calculated as i / 2 for reasons mentioned above. Thus, the total energy consumption E
is represented as EK + EPE.

(a) Example of loop level paralleled scheduling for CGRA

(b) Uniting the prologue and the epilogue parts

Fig. 18. Counting the numbers of nodes for the prologue, the kernel, and the
epilogue.

B. Experimental Results
1) Effectiveness of Selective Validations

 Our first set of experiments is to evaluate the effectiveness of our selective
validations for software-implemented redundancy techniques on CGRAs in terms of the
runtime and the energy consumption. Figure 19 clearly show the effectiveness of our
selective validation for TMR on CGRAs. Y-axis in Figure 19(a) represents the
normalized runtime of TMR with the full voting and that of TMR with the selective
voting (our approach) to that of the base. Over the suite of benchmarks, our selective
validation for TMR can improve the performance in terms of the runtime by 38.3% on
average as compared to that of the full validation for TMR on CGRAs. Y-axis in
Figure 19(b) represents the normalized energy consumption of TMR with the full voting
and that of TMR with the selective voting to that of the base. Over the suite of
benchmarks, our selective validation for TMR can reduce the energy consumption by
18.1% on average as compared to that of the full validation for TMR on CGRAs. The
main reason of these improvements of runtime and energy consumption is because our
approach selects only synchronous operations, i.e., store operations, as validation points
rather than every operation where the previously proposed TMR technique validates.
Note that every voting requires additionally seven operations which are extremely
expensive with respect to the runtime and the energy consumption. Figure 19(a) and
Figure 19(b) show negligible improvements for benchmark Gaussian since it contains
relatively small number of normal operations between memory ones. On the other hand,
the other benchmarks contain the larger number of normal operations between memory
ones where our approach can reduce the number of validations and improve the runtime
and the energy consumption. Therefore, additional operations for triplication and voting
can be covered by unused PEs for these benchmarks. In particular, Lowpass in TMR
with the selective voting significantly improves the runtime (59.6%) than that in TMR
with the full voting and Erode in TMR with the selective voting significantly improves
the energy consumption (31.1%) than that in TMR with the full voting. Note that our
approach triplicates every operation and can manage the comparable fault coverage as
the previously proposed or conventional TMR technique does.

(a) Runtime evaluation of our selective voting
(the asterisk indicates benchmarks with recurrent loops)

(b) Energy consumption evaluation of our selective voting

Fig. 19. Our selective voting for TMR outperforms the full voting in terms of
runtime and energy consumption.

 Interestingly, our selective voting techniques are more effective at reducing runtime
for the benchmark kernels that include recurrent loops (benchmarks marked with the

asterisk in Figure 19(a)). They can improve the runtime by 47.8% on average in the
selective voting as compared to the full voting while the other benchmarks can improve
the runtime by 34.0% on average. In the case of applying TMR with the full voting
mechanism to these benchmarks, the critical path of recurrent data dependence, crucially
affecting the RecMII, lengthens about three times more than the critical path without
voting mechanism. Due to the bigger RecMII, MII, the maximum value of RecMII and
ResMII, is also set to the value of RecMII that is much higher value than ResMII, so
the II increases; i.e., the performance degrades due to the longer data dependence
between iterations. In our approach, however, the RecMIIs of these benchmarks slightly
increase since the critical path lengthens less than the full voting. Thus, our approach
can achieve better performance than the TMR with the full voting in recurrent loop
cases.

 We also evaluate our software-implemented DMR with the selective comparison and
DMR with the full comparison in terms of the runtime and the energy consumption.
Figure 20 clearly show that DMR with the selective comparison mechanism improves
the runtime and the energy consumption. DMR with the full comparison duplicates and
compares all the operations while our DMR with the selective comparison duplicates all
the operations but compares only before a store operation is executed. We normalize the
runtime of DMR with the full comparison and that of DMR with the selective
comparison to that of the base as shown in Figure 20(a). Most benchmarks achieve
runtime improvement (14.3% on average over benchmarks) with our selective
comparison as compared to DMR with the full comparison. The benchmark Erode in
DMR with the selective comparison achieves the maximum runtime improvement by
20.0%. And we normalize the energy consumption of DMR with the full comparison
and that of DMR with the selective comparison to that of the base as shown in Figure
20(b). Most benchmarks achieve energy saving slightly (3.6% on average over
benchmarks) as compared to DMR with the full comparison. The benchmark Erode in
DMR with the selective comparison achieves the maximum energy consumption
improvement by 6.4%. In general, DMR techniques with the selective validation achieve
the less benefit in terms of the runtime and the energy consumption than TMR
techniques mainly because DMR generates the smaller number of duplicated operations
than triplicated operations in TMR. DMR also needs additional two operations for
implementing the comparison while TMR needs additional seven operations for
implementing the voting. Thus, several benchmarks incur the runtime and the energy
consumption overheads in the selective comparison for DMR close to those in the full
comparison.

(a) Runtime evaluation of our selective comparison

(b) Energy consumption evaluation of our selective comparison

Fig. 20. Our selective comparison for DMR outperforms the full comparison in
terms of runtime and energy consumption

 In Figure 19(b) and Figure 20(b), we also analyze the energy consumption portions
of local memory access, configuration memory access, the rest part of PE array, idle
PE, and active PE of ALU, multiplication, division, routing as summarized in Table 2.

There is no improvement of the energy consumption by the local memory access
operations between the full validation and the selective validation as shown in Figure
19(b) and Figure 20(b). The reason is because there is no difference in the numbers of
local memory access operations between the full validation and the selective one. The
improvement of the selective validation as compared to the full validation is mainly
influenced by operations of the configuration memory access, the rest part of PE array,
and the active ALU PE. The energy savings by operations of the configuration
memory access, the rest part of PE array, and the active ALU PE between the full
validation and the selective validation are 9.8%, 7.3% and 6.6%, respectively, for TMR
as shown in Figure 19(b) and 1.9%, 1.4% and 1.4%, respectively, for DMR as shown
in Figure 20(b). The improvement of the energy consumption for the configuration
memory access and the rest part of PE array comes from the decrease of II or
runtime improvement. The DFG of the selective validation is usually simpler than the
DFG of the full validation so II of selective schemes can improve due to the reduced
number of nodes and edges. Therefore, the improvement of the energy consumption in
the active ALU PE results from the reduced number of ALU nodes by validating
selective schemes. Other operations such as the idle PE and the active PE of
multiplication, division and routing slightly affect the improvement of the energy
consumption between the full validation and the selective validation.

 In summary, our selective validation techniques for TMR and DMR are significantly
more effective in terms of runtime (by 38.3% and 14.3% on average) and energy
consumption (by 18.1% and 3.6% on average) as compared to the complete validation
techniques for those redundancy techniques implemented in software on CGRAs.

2) Enhanced Effectiveness with Optimizations

 Our second set of experiments is to evaluate our optimization technique by reducing
the number of store operations where the validation mechanism needs to be applied.
Figure 21 and Figure 22 clearly show the effectiveness of our selective validation
techniques with store operations reduced in terms of the runtime and the energy
consumption. Note that benchmarks with the recurrent loops are excluded in this set of
optimization experiments.

 Figure 21(a) shows that our optimization technique can improve the performance with
respect to the runtime on average by 10.5% as compared to our own technique without
the optimization and by 41.0% as compared to the previously proposed TMR technique
with the full validation. Interestingly, our selective validation techniques with the
optimization are effective in terms of the runtime for benchmarks Dotproduct (59.9%
improvement) and Gaussian (27.4% improvement) while they are less effective in the
selective validation techniques without the optimization as shown in Figure 21(a). Figure
21(b) shows that our optimization technique can reduce the energy consumption by
10.1% on average as compared to our own technique without the optimization and by
26.2% as compared to the previously proposed TMR technique with the full validation.
This improvement of the energy consumption for the optimization is definitely
influenced by the local memory access operations as shown in Figure 21(b) and figure
22(b). The energy savings by the local memory access operations between the full
validation and our optimization with store reduction are 6.8% for TMR and 9.9% for
DMR. This effectiveness results from the reduced number of store operations obviously,
and the power dissipation of the local memory access operation is relatively high as
shown in Table 2. The energy savings by operations of the configuration memory
access, the rest part of PE array, and the active ALU PE between the full validation
and the our optimization with store reduction are 7.8%, 5.8% and 5.2%, respectively,
for TMR and 1.7%, 1.3% and 0.8%, respectively, for DMR. The improvement of the
energy consumption for other operations such as the configuration memory access, the
rest part of PE array and so on comes from the same reason of the improvement by
the selective validation as compared to the full validation.

 Figure 22(a) shows that our optimization technique for DMR by reducing the number
of store operations can achieve the runtime on average by 17.8% as compared to the
previously proposed DMR techniques with the full comparisons. Note that these
optimization techniques by reducing the number of store operations show the high
effectiveness on some benchmarks where there exist several store operations so that we

can have enough margins to decrease the number of store operations, leading to the
runtime improvement. On the contrary, benchmark Wavelet shows the runtime
degradation since it has just two store operations where the store reduction rather incurs
the runtime overhead due to the extra operations for merging these operations. Figure
22(b) shows that our optimization technique for DMR by reducing the number of store
operations can achieve the energy consumption on average by 14.0% as compared to
the previously proposed DMR techniques with the full comparisons. Interestingly, the
energy consumption of our optimization technique for DMR is less than one of the base
on average and some benchmarks such as Cvtcolor, Dotproduct, Gaussian, Swim calc1,
and Swim calc3 as shown in Figure 22(b). It is reduced to 2.8% on average and 15.2%
on benchmark Cvtcolor as compared to the base. In particular the benchmarks
Dotproduct and Gaussian, both runtime and energy consumption of our optimization are
less than of the base as shown in Figure 22(a) and Figure 22(b). It means that we can
detect soft errors by applying the DMR technique under less runtime, less energy
consumption, and tolerable reliability than original scheme on Dotproduct and Gaussian.

(a) Runtime improvement of our selective voting and optimization

(b) Energy consumption of our selective voting and optimization

Fig. 21. Our optimization techniques for TMR can improve the performance in
terms of runtime and the energy consumption

(a) Runtime improvement of our selective comparison and optimization

(b) Energy consumption of our selective comparison and optimization

Fig. 22. Our optimization techniques for DMR can improve the performance in
terms of runtime and the energy consumption

 In summary, our optimization technique with the selective validation techniques for
TMR and DMR can achieve the further improvement in terms of the runtime (by
41.0% and 17.8% on average) and the energy consumption (by 26.2% and 14.0% on
average) as compared to the previously proposed redundancy techniques with the
complete validation implemented in software on CGRAs.
 Our last set of experiments is to show evaluations of the runtime and the energy
consumption of the base and all redundancy techniques such as DMR with the full
comparison, DMR with the selective comparison, DMR with the selective comparison
and the store reduction, TMR with the full voting, TMR with the selective voting, and
TMR with the selective voting and the store reduction over the benchmark, Cvtcolor.
Clearly, TMR techniques demand higher overheads for the runtime and the energy
consumption than the DMR ones as shown in Figure 23 while TMR ones are able to
correct errors and DMR ones are not (they just detect them, i.e., they need the recovery
mechanisms). Our proposals with the selective validation and the store reduction can
achieve the better performance in terms of runtime and energy consumption than
conventional DMR and TMR techniques implemented in software on CGRAs. Our
optimization technique by reducing the number of store operations can incur the runtime
overheads by 10.0% for DMR and 130.0% for TMR and energy consumption overheads
by -15.2% for DMR and 11.3% for TMR on average over benchmarks as compared to
the base. Note that previously proposed DMR and TMR techniques incur the runtime
overheads by 19.9% and 159.5% and the energy consumption overheads by 6.4% and
38.2%, respectively, which are much higher than our selective validation techniques.

 Indeed, our selective techniques with the optimization can reduce the runtime
overheads by 21.4% and 42.4% for DMR and TMR and also reduce the energy
consumption overheads by 23.4% and 33.7% for DMR and TMR with the full
validations, respectively. However, our selective validation techniques provide the
comparable reliability to conventional redundancy techniques. Note that these experiments
can be expanded to guide designers or programmers to explore interesting tradeoff
spaces between the runtime, the energy consumption, and the reliability, which is
definitely our future work.

 In summary, our evaluations of runtime and energy consumption show the efficacy of
our selective techniques with the optimization and our various approaches for
redundancy techniques can open a new venue for multidimensional tradeoff studies.

Fig. 23. Performance Evaluations among Various Protection Techniques
(Benchmark: Cvtcolor)

. Conclusion

 Soft errors induced by radiation are receiving significant concerns since the soft error
rate is increasing exponentially with aggressive technology scaling. CGRA with high
performance and high flexibility becomes more and more popular even in critical
applications such as finance programs, human health system, etc. In order to improve
the reliability in CGRA, several fault tolerant techniques have been proposed but they
incur area cost and performance degradation significantly. In order to protect the
datapath in CGRAs from soft errors without area cost, we propose software based
selective validation techniques with the least performance overhead and the comparable
fault coverage. We also propose an optimization technique by reducing the number of
store operations to maximize the performance improvement. Our optimization technique
merges multiple store operations into one store operation by DFG modification to reduce
the number of validations. In conclusion, our selective validation techniques with the
optimization can improve the runtime by 41.0% and the energy consumption by 26.2%
as compared to the previously proposed TMR with the full validation.

 Our future works include optimizing the operation of duplicating the original DFGs
for applying redundancy technigues such as TMR and DMR with guaranteeing the
comparable fault coverage and correct functionality in order to improve performance. We
are also interested in investigating different priorities for various operations to apply the
selective protection to only important or critical ones in terms of the reliability.

References
[1] Y. Kim, J. Lee, A. Shrivastava, and Y. Paek, “Operation and data mapping for
CGRAs with multi-bank memory,” in ACM SIGPLAN Notices, 2010.
[2] H. Singh, G. Lu, R. Maestre, M. Lee, F. Kurdahi, N. Bagherzadeh, E. Filho, and
R. Maestre, “MorphoSys: case study of a reconfigurable computing system targeting
multimedia applications,” DAC 2000 Proceedings of the Design Automation Conference,
2000.
[3] R. Baumann, “Soft errors in advanced computer systems,” Design and Test of
Computers, 2005.
[4] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on the
atmospheric neutron soft error rate,” Nuclear Science, IEEE Transactions on, 2000.
[5] F. Wrobel, J. Palau, M. Calvet, O. Bersillon, and H. Duarte, “Simulation of
nucleon-induced nuclear reactions in a simplified SRAM structure: scaling effects on
SEU and MBU cross sections,” Nuclear Science, IEEE Transactions on, 2001.
[6] N. Wang, J. Quek, T. Rafacz, and S. Patel, “Characterizing the effects of transient
faults on a high-performance processor pipeline,” DSN 2004 Proceedings of the
Dependable Systems and Networks Page 61.
[7] D. Lyons, “SUN screen,” Forbes, 2000.
[8] S. Michalak, K. Harris, N. Hengartner, B. Takala, and S. Wender, “Predicting the
number of fatal soft errors in Los Alamos National Laboratory’s ASC Q
supercomputer,” Device and Materials Reliability, IEEE Transactions on, 2005.
[9] S. Jafri, S. Piestrak, O. Sentieys, and S. Pillement, “Design of a fault tolerant
coarse-grained reconfigurable architecture: a case study,” ISQED 2010 Proceedings of the
The International Symposium on Quality Electronic Design.
[10] D. Alnajiar, Y. Ko, T. Imagawa, H. Konoura, M. Hiromoto, Y. Mitsuyama, M.
Hashimoto, H. Ochi, and T. Onoye, “Coarse-grained dynamically reconfigurable
architecture with flexible reliability,” FPL 2009 Proceedings of the Field Programmable
Logic and Applications.
[11] T. Schweizer, A. Kuster, S. Eisenhardt, T. Kuhn, and W. Rosenstiel, “Using
run-time reconfiguration to implement fault-tolerant coarse grained reconfigurable
architectures,” IPDPS 2012 Proceedings of the International Parallel & Distributed
Processing Symposium.
[12] T. Schweizer, P. Schlicker, S. Eisenhardt, T. Kuhn, and W. Rosenstiel, “Low-cost
TMR for fault-tolerance on coarse-grained reconfigurable architectures,” ReConFig 2011
Proceedings of the Reconfigurable Computing and FPGAs.
[13] C. Engelmann, H. Ong, and S. Scott, “The case for modular redundancy in
large-scale high performance computing systems,” IASTED 2009 Proceedings of the

International Association of Science and Technology for Development.
[14] F. Kastensmidt, L. Sterpone, L. Carro, and M. Reorda, “On the optimal design of
triple modular redundancy logic for SRAM-based FPGAs,” DATE 2005 Proceedings of
the Design, Automation and Test.
[15] K. Singh, A. Agbaria, D. Kang, and M. French, “Tolerating SEU faults in the
Raw architecture,” WDES 2006 Proceedings of the International Workshop on
Dependable Embedded Systems.
[16] G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with
coarse-grained reconfigurable array architecture,” AHS 2010 Proceedings of the Adaptive
Hardware and Systems.
[17] S. Pillement, O. Sentieys, and R. David, “DART: a functional-level reconfigurable
architecture for high energy efficiency,” EURASIP Journal on Embedded Systems, 2008.
[18] S. Eisenhardt, A. Kuster, T. Schweizer, T. Kuhn, and W. Rosenstiel, “Spatial and
temporal data path remapping for fault-tolerant coarsegrained reconfigurable
architectures,” DFT 2011 Proceedings of the defect and fault tolerance in VLSI systems.
[19] Y. Kim and R. Mahapatra, “Dynamic context management for low power
coarse-grained reconfigurable architecture,” GLVLSI 2009 Processdings of the Great
Lakes VLSI.
[20] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H.
Hoffman, P. Johnson, J. Lee, W. Lee et al., “The Raw microprocessor: a computational
fabric for software circuits and general-purpose programs,” Micro, IEEE, 2002.
[21] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “SWIFT: Software
implemented fault tolerance,” CGO 2005 Proceedings of the Code Generation and
Optimization.
[22] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins, “Design methodology for a
tightly coupled VLIW/Reconfigurable Matrix Architecture: A case study,” DATE 2004
Proceedings of the Design, Automation and Test.
[23] J. Chang, G. A. Reis, and D. I. August, “Automatic instruction-level software-only
recovery,” DSN 2006 Proceedings of the Dependable Systems and Networks.
[24] B. R. Rau, “Iterative modulo scheduling: An algorithm for software pipelining
loops,” in MICRO 1994.
[25] K. Lee, A. Shrivastava, M. Kim, N. Dutt, and N. Venkatasubramanian, “Mitigating
the impact of hardware defects on multimedia applications: a cross-layer approach,” in
ACM Multimedia, 2008.
[26] Y. Kim, J. Lee, A. Shrivastava, and Y. Paek, “Memory access optimization in
compilation for coarse-grained reconfigurable architectures,” TODAES 2011 Proceedings
of the The ACM Transactions on Design Automation of Electronic Systems.
[27] G. Bradski, “The OpenCV library,” Doctor Dobbs Journal, 2000.

[28] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the
new millennium,” Computer, 2000.
[29] http://technology-and-science.lawyers.com/blogs/archives/4461-Are-Cosmic-Rays-a-
Factor-in-Toyota-Acceleration-Problems.html
[30] KIM, Y., LEE, J., MAI, T. X., AND PAEK, Y. 2012. Improving performance of
nested loops on reconfigurable array processors. ACM Trans. Archit. Code Optim. 8, 4,
32:1 32:23.
[31] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. Kim. Robust system design with
built-in soft-error resilience. Computer 2005 Proceedings of the Computer.
[32] A. Nieuwland, S. Jasarevic, and G. Jerin. Combinational logic soft error analysis
and protection. In On-Line Testing Symposium, 2006. IOLTS 2006. 12th IEEE
International, pages 6.
[33] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, and M. Violante. Soft-error
detection through software fault-tolerance techniques. In Defect and Fault Tolerance in
VLSI Systems, 1999. DFT'99. International Symposium on, pages 210-218. IEEE, 1999.
[34] K. Mohanram and N. Touba. Cost-effective approach for reducing soft error failure
rate in logic circuits. In International Test Conference, pages 893-901, 2003.
[35] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt. Techniques to reduce the soft
error rate of a high-performance microprocessor. 2004 ACM SIGARCH Computer
Architecture News.
[36] J. Blome, S. Gupta, S. Feng, and S. Mahlke. Cost-efficient soft error protection for
embedded microprocessors. In Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems, pages 421-431. ACM, 2006.
[37] H. Pao-Ann, L. Shang-Wei, H. Chin-Chieh, F. Jih-Ming, L. ChaoSheng, C.
Cheng-Chi, C. Kuo-Cheng, L. Chun-Hsien, and L. Pin-Hsien, "Real-time embedded
software design for mobile and ubiquitous systems," in International Conference on
Embedded and Ubiquitous Computing, EUC 2007, (Lecture Notes in Computer Science
vol. 4808), pp. 718-729.
[38] Shivakumar, P., Kistler, M., Keckler, S.W., Burger, D., Alvisi, L.: Modeling the e
ect of technology trends on the soft error rate of combinational logic. In: DSN ’02,
Dependable Systems and Networks, Washington, DC, USA, 2002, pp. 389 398. IEEE
Computer Society, Los Alamitos (2002).
[39] http://techno.okezone.com/read/2009/10/31/324/271023/sun-microsystem-tingkatkan-
kinerja-portfolio-storage
[40] http://technology-and-science.lawyers.com/blogs/archives/4461-Are-Cosmic-Rays-
a-Factor-in-Toyota-Acceleration-Problems.html
[41] http://www.veteranstoday.com/2012/07/29/fukushimas-melted-reactors-500-days-
on/fukushima-daiichi-reactor-3-explosion-images/

[42] https://mocana.com/blog/2012/page/32/
[43] http://www.qualitydigest.com/magazine/2009/mar/article/when-your-life-depends-
software.html
[44] http://www.woodward.com/applications-aircraft.aspx
[45] http://drivesteady.com/the-ladys-guide-to-car-insurance

