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Motivation

Reliability is important

Computer system doesn’t work
properly because of soft error
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Reliability is important

® Soft errors can cause significant financial loss
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Motivation

Reliability is important

® Reliability is related to our life

Are Cosmic Rays a Factor in Toyota Acceleration Problems?

Wednesday, March 17, 2010 by Roger D. "SKip" Slates

As Toyota continues to grapple with the unintended acceleration-related crisis, existing theories
about the reasons for the acceleration are giving way to seemingly far-fetched new ideas. Accaording
to some news reports, federal regulators are studying the possibility that cosmic rays are

responsible for Tayota vehicles suddenly accelerating to high speeds.

Researchers have known that 0§
spacecraft. In fact, aircraft are d
radiation.

Inthe 1870s, researchers also
and interfere with cell phones
crashes, and malfunctioning of
automobiles has never been s

That might change as Califarni
find mare answers for the sudden acceleration in these v
glectronic throttle control systems. In fact, Toyota vehicles
Toyota vehicles included in the recalls come with microp
now being thrown about is that cosmic radiation could int
vehicle to suddenly accelerate.

According to radiation testing experts, considering the nu
possible that these automaobiles are at risk of interfere

Firstthe facts. The effect of cosmi we nn alartronire hae hoan knmag

lectronics by suddenly flippi bit f zerot - -
cimaronice out smaner vatases mecome merans oy UNINteNded acceleration
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Motivation

Reliability is important

® Reliability is related to our life
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Motivation

Reliability 1s important

o-

® Robot malfunctions due to lots of radiation

Fukushima nuclear accident

Robot malfunctions

+
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Motivation

Reliability is important

- Soft error damaged financial losing - Reliability is directly connected our life

Are Cosmic Rays a Factor in Toyota Acceleration Problems?

Wednesday, March 17, 2010 by Roger D. "Skip" Slates

As Toyota continues to grapple with the uninte d acceleration-related crisis, existing theories
about the reasons for the acceleration are giving way to seemingly far-fetched new ideas. According
to some news reports, federal regulatars are studying the possibility that cosmic [ays are
responsible for Toyota vehicles suddenly acce\ercﬁng to high speeds

Firstthe facts. The effect of cosf

Researchers have wn that
spacecraft In fact, aircraft are dig
radiation

Business Hews

Hot Topics  Bo

Inthe 1970s, researchers also
and interfere with cell phones 3
crashes, and malfunctioning of |
automobiles has never been si

That might change as Californi{
find more answers for the sudden acceleration in these v
electronic throttle control systems. In fact, Toyota vehicles
Tayota vehicles included in the recalls come with micropri
now being thrown about is that cosmic radiation could int
vehicle to suddenly accelerate

According to radiation testing experts, considering the nui
possible thatthese automobiles are atrisk of interference
electronics by suddenly flipping a bit from a zero to a one
electronics get smaller, voltages become lower and d

- Vulnerable reliability

Reliability 1s an important concern
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Motivation

Soft error - an increasing concern

® Temporary bit flip in a semiconductor device

Transistor

D. Shivakumar et al. “Modeling the effect of technology trends on the soft error rate of combinational logic”” 2002 DSN
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Motivation

Soft error - an increasing concern

® Temporary bit flip in a semiconductor device

Transistor
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Motivation

Soft error - an increasing concern
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D. Shivakumar et al. “Modeling the effect of technology trends on the soft error rate of combinational logic”” 2002 DSN
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Motivation

Soft error - an increasing concern
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Soft errors are becoming a critical design concern

D. Shivakumar et al. “Modeling the effect of technology trends on the soft error rate of combinational logic”” 2002 DSN
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Motivation

CGRA Architecture

® Emerging architecture
— High performance, flexibility, low power

Configuration memory
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Motivation

CGRA Architecture

® Emerging architecture
— High performance, flexibility, low power

Configuration memory
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Motivation

Advantages of CGRA

Processor

Kernel to
accelerate

Program
thread

® Specific kernels in a thread can be power/performance critical

A. Shrivastava et al. “Enabling Multithreading on CGRAs” 2011 ICPP
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® Specific kernels in a thread can be power/performance critical

Processor
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Motivation

Advantages of CGRA

® Specific kernels in a thread can be power/performance critical

Processor

CO-processor

++4+1

++4

A. Shrivastava et al. “Enabling Multithreading on CGRAs” 2011 ICPP
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Motivation

Advantages of CGRA

® Specific kernels in a thread can be power/performance critical

~

N

4
4
4
4
4

Processor

CO-processor

++4+1

++4

® The kernel can be mapped and scheduled for execution on the CGRA
® Using the CGRA as a co-processor (accelerator)

A. Shrivastava et al. “Enabling Multithreading on CGRAs” 2011 ICPP
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Motivation

Advantages of CGRA

|
Processor |
|
|

Co-processor

++4+
+++

® Specific kernels in a thread can be power/performance critical
® The kernel can be mapped and scheduled for execution on the CGRA
® Using the CGRA as a co-processor (accelerator)

A. Shrivastava et al. “Enabling Multithreading on CGRAs” 2011 ICPP
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Motivation

Advantages of CGRA

|
Processor |
|
|

Co-processor

++4+
+++

® Specific kernels in a thread can be power/performance critical
® The kernel can be mapped and scheduled for execution on the CGRA

® Using the CGRA as a co-processor (accelerator)
— Power consuming processor execution is saved
— Better performance of thread is realized
— Overall throughput is increased

A. Shrivastava et al. “Enabling Multithreading on CGRAs” 2011 ICPP
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Motivation

Advantages of CGRA

|
Processor |
|
|

Co-processor

CGRA becomes more and more popular thanks to
high performance, flexibility and low power

® Specific kernels in a thread can be power/performance critical
® The kernel can be mapped and scheduled for execution on the CGRA

® Using the CGRA as a co-processor (accelerator)
— Power consuming processor execution is saved
— Better performance of thread is realized
— Overall throughput is increased

A. Shrivastava et al. “Enabling Multithreading on CGRAs” 2011 ICPP
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Motivation

Popular CGRA usage for reliability concern

® CGRA can be used widely close to humans
— Reliability in CGRA is becoming an important issue

https://mocana.com/blog/tag/medical-device/; www.sustainabletechnolog.com; www.kia.co.nz; www.woodward.com;
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Motivation

Popular CGRA usage for reliability concern

® CGRA can be used widely close to humans
— Reliability in CGRA is becoming an important issue

Advanced Safety Vehicle

Vehicle engine control unit

https://mocana.com/blog/tag/medical-device/; www.sustainabletechnolog.com; www.kia.co.nz; www.woodward.com;

+
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Popular CGRA usage for reliability concern

® CGRA can be used widely close to humans
— Reliability in CGRA is becoming an important issue
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Motivation

Popular CGRA usage for reliability concern

® CGRA can be used widely close to humans

— Reliability in CGRA is becoming an important issue
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Popular CGRA usage for reliability concern

® CGRA can be used widely close to humans
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Motivation

Popular CGRA usage for reliability concern

Vehicle engine control unit Airplane control unit

Advanced Safety Vehicle

Human life

When Your Life Depends
on Software

Soft error occurrence in various embedded
systems can cause catastrophic results

https://mocana.com/blog/tag/medical-device/; www.sustainabletechnolog.com; www.kia.co.nz; www.woodward.com;

32 2016-04-02 I ab



https://mocana.com/blog/tag/medical-device/
http://www.sustainabletechnolog.com/
http://www.kia.co.nz/
http://www.woodward.com/flightcontrolsystems.aspx

2. Related works

lab



Related works

Soft Error : hardware protection
software protection

Previously proposed techniques for CGRAs

[ ]
]

Paper

Key Idea

Experiment

drawback

Comment

[Alnajiar, 2009]

dynamic operation modes in CGRA
architecture to provide the various levels
of reliability under the performance

set up

- compare to the number of gate
(using tool : RTL)

- flexible protection
mechanism

- area-overhead
(implement voter)

- performance degradation

[jafri, 2010]

L . o/ i
constraint. result |- area : 26.6% increase (cant use resource fully)
- compare to original FU, DMR FU and
. - area-overhead
set up| self-checking FU

self-checking residue mode for multiplicat

(using STMicroelectronics 130 nm)

ion and addition operations on DART arch
itecture

result

- area : 18% decrease compare to DMR
- performance : 400% decrease compare
to DMR

- less area-overhead
compare to DMR

(implement self-checking
- performance degradation

- only detection

- not cover specific fault

[Schweizer, 2011]

exploiting unused FUs for replications to
increase the reliability with the minimal
hardware overhead.

FEHM (Flexible Error Handling Module) -
supports DMR and TMR schemes on
specific target architectures.

- compare to TMR and Clustering PE

et UP| include FEHM
- area : 12.8% decrease compare to TMR
result |- power : 1.6~18.6% decrease compare

to TMR

- supports DMR and
TMR schemes with
modified FEHM

- considering power

- area-overhead
(implement FEHM)

- cant apply to data
intensive application

[Schweizer, 2012]

to resolve previous ([Schweizer, 2011]) lim
itation, multiple contexts to be mapped o
n CGRA by using the concept of temporal
Redundancy

set up

- mapping to CGRA used FFT application

- estimate required area as context
memory is increased

- Estimate time between read and store

result

- area : 31% decrease compare to TMR
- performance : NR/TMR 26%/12%
decrease

- enable to apply permanent,
transient, timing fault

- enable to apply any
application

- performance degradation

compare to TMR
(increase context)

- still exits area-overhead

[K. Singh, 2006]

Selective apply combined scheme to code
that can cause a soft error.

set up

- reliability is the percentage of time that
FT matrix multiplication can run on raw
architecture without system reset

- no area-overhead
(software based technique)

- limited RAW architecture
- performance overhead
- not consider TMR voting

result |- reliability : 89.2%(108 out of 1000 reset)
- compare base arch with proposed arch
replication & voter is implemented on PE set U based on RTL  coftware technique
to reduce area overhead; to reduce the Pl- ACS(time consuming operations) - area-officienc q - performance overhead
[Lee, 2010] critical path, add conditional execution & module in_viterbi decoder map CGRA - y (replication & voter map
. ; . . - - (minimal hardware
column wide bus; thermal impact optimal - area : 12% increase compare to base e on PE)
mapping on PE is proposed. result |- performance : decrease TMR(700%)/DMR

(167%)
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Related works

HW based techniques area overhead
PEO [€¢¥ PE1 [¢&¥| PE2 [P PE3
A A A A
v v v \ 4
PE4 [P PE5 [P PE6 [*P]| PE7
A A A A
v v \ 4 \ 4
PES [¢¥| PE9 [¢¥] PE10 [*¥ PEl1l
A A A A
v v v \ 4
PE12 j€»] PE13 [¢¥] PE14 [*P] PE15

D unused PE . used PE

T. Schweizer, A. Kuster, S. Eisenhardt, T. Kuhn, and W. Rosenstiel, “Using run-time reconfiguration to implement fault-tolerant coarse grained reconfigurable

architectures,” in IPDPSW, 2012.
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HW based techniques - area overhead
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2016-04-02

lab



Related works

HW based techniques - area overhead
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D unused PE . used PE
® DMR (Dual Modular Redundancy)

® TMR (Triple Modular Redundancy)
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T. Schweizer, A. Kuster, S. Eisenhardt, T. Kuhn, and W. Rosenstiel, “Using run-time reconfiguration to implement fault-tolerant coarse grained reconfigurable
ar§h7itectures,” in IPDPSW, 2012.
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HW based techniques - area over

PEO [€¢¥ PE1 [¢&¥| PE2 [P PE3
A A A A
v v v \ 4

PE4 [€¥ PE5 [P PE6 [P PE7
A A A A
\ 4 v \ 4 \ 4

PES [¢¥| PE9 [¢¥] PE10 [*¥ PEl1l
A A A A
v v v \ 4

PE12 j€»] PE13 [¢¥] PE14 [*P] PE15

D unused PE . used PE
® DMR (Dual Modular Redundancy)
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_ A\ 4 JV A 4
»| EDM
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T. Schweizer, A. Kuster, S. Eisenhardt, T. Kuhn, and W. Rosenstiel, “Using run-time reconfiguration to implement fault-tolerant coarse grained reconfigurable

architectures,” in IPDPSW, 2012.
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HW based techniques - area overhead
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HW based techniques - area overhead
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SW based techniques - performance overhead

® TMR (Triple Modular Redundancy)

» Module 1

T~

Input

» Module 2

» Module 3

v

»| \oter

—> Output

TMR voter
implementation

® DMR (Dual Modular Redundancy)

Input =

» Module 1

~~

Comparator

— Output »

» Module 2

v

DMR comparator
implementation

Module 1

Module 2

Module

Module 1

Module 2

&

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-gra

41

ined reconfigurable array architecture,

“in AHS, 2010.
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SW based techniques - performance overhead

Performance Overhead of TMR/DMR

Normalized Runtime to Base
S

Base DMR TMR
Techniques

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.
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SW based techniques - performance overhead

Performance Overhead of TMR/DMR

/700%

N

Normalized Runtime to Base
S

Base DMR TMR
Techniques

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.
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SW based techniques - performance overhead

® DFG Is generated for loop kernel

for (1 =0; 1 <iteration; i ++) {
a[i] = (b[i]-X)ZY; /*XandY are constants */
}

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.

lab



Related works

SW based techniques - performance overhead

® DFG Is generated for loop kernel

for (1 =0; 1 <iteration; i ++) {
a[i] = (b[i]-X)ZY; /*XandY are constants */ »

}

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.

45 2016-04-02 Iqb



Related works

SW based techniques - performance overhead

® DFG Is generated for loop kernel

b[i]
(Dx

for (1 =0; 1 <iteration; i ++) {
a[i] = (b[i]-X)ZY; /*XandY are constants */ »

}

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.
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SW based techniques - performance overhead

® DFG Is generated for loop kernel

b[i]

for (1 =0; 1 <iteration; i ++) { x
a[i] = (b[i]-X)ZY; /*XandY are constants */ »

K (D,

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.
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SW based techniques - performance overhead

® DFG Is generated for loop kernel

for (1 =0; 1 <iteration; i ++) { X
a[i] = (b[i]-X)ZY; /*XandY are constants */ »

(2
K (D,
()

alil

b[i]
i

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.
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SW based techniques - performance overhead

for (i =0; i <iteration; i ++) {

}

ali]=(b[i]-X) 7Y; /*XandY are constants */

_ 2

CO®ECE®

: Store

: Load

: Subtraction
: Compare

: Logical AND
: Addition

: Voter

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.
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Related works

SW based techniques - performance overhead

for (i =0; i <iteration; i ++) {

}

ali]=(b[i]-X) 7Y; /*XandY are constants */

_ 2

p TO 0B

CO®ECE®

: Store

: Load

: Subtraction
: Compare

: Logical AND
: Addition

: Voter

oloRo

©

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.
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Related works

SW based techniques - performance overhead

for (i =0; i <iteration; i ++) {
ali]=(b[i]-X) 7Y; /*XandY are constants */

(=
S
h O
O

: Store

: Load
- : Subtraction
: Compare
: Logical AND
: Addition
: Voter

Q0.

(&

MO0

G. Lee and K. Choi, “Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture,” in AHS, 2010.
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3. Problem definition
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Problem definition

Significantly expensive voting mechanism

|Overhead Portions (Triplications VS. Votings for TMR)|

‘ ‘ ‘ | . Trlphcatlon Overhead . Votmg Overhead
0 - | | | |
B »g c} “b‘

oY

Benchmarks

[u—
|

Total Overhead
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Problem definition

Significantly expensive voting mechanism

° o Triplication

1 -

. Trlphcatlon Overhead . Votmg Overhead
| | | | .
0 m
. »g c} “b‘
oY

Benchmarks

|Overhead Portions (Triplications VS. Votings for TMR)|

Total Overhead
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Problem definition

Significantly expensive voting mechanism

|Overhead Portions (Triplications vs. Votings for TMR)|

B B B B B B B B B
I Triplication Overhead || Voting Overhead
— 62%
=
— 38%
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4. Thesis proposal: Selective
validation for efficient protection
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for (i=0; i<iteration; i ++) {
alil]=(b[i]-X) Y; /*XandY are constants */

Selective validation : reduce expensive voting

Thesis proposal: Selective validation for efficient protection

® Suppose that memory of CGRA is protected against errors

— Traditional protection methodologies for memory are inexpensive as
compared to maintaining execution cores

® Do not replicate the memory operation

® Synchronization point where corrupt data can propagate
and cause failure
— erroneous store operations can eventually cause incorrect outputs

® The program will be executed correctly if corrupted data is
not stored in the main memory
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for (i=0; i<iteration; i ++) {
alil]=(b[i]-X) Y; /*XandY are constants */

Selective validation : reduce expensive voting

Thesis proposal: Selective validation for efficient protection

® TMR with full voting

— Voting at every operation (except  x(-)
memory operation)
® TMR with selective voting
— Voting at operation just before store
— Memory is protected by ECC or Parity
— Corrupt data in memory =>» failure 10)

vd5
Sto st0

Base TMR with full voting TMR with selective voting
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for (i=0; i<iteration; i ++) {
alil]=(b[i]-X) Y; /*XandY are constants */

Selective validation : reduce expensive voting

Thesis proposal: Selective validation for efficient protection

® TMR with full voting

— Voting at every operation (except  x(-)
memory operation)
® TMR with selective voting
— Voting at operation just before store
— Memory is protected by ECC or Parity
— Corrupt data in memory =>» failure 10)

vd5
st st0

Base TMR with full voting TMR with selective voting
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Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

Base TMR with full voting TMR with selective voting
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61 2016-04-02 Iab



Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

Base TMR with full voting TMR with selective voting
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Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

Base TMR with full voting TMR with selective voting
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Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

() Total : 2000

Base TMR with full voting TMR with selective voting
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Thesis proposal: Selective validation for efficient protection
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Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

() Total : 2000

Base TMR with full voting TMR with selective voting
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Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

300

700

() Total : 2000

Base TMR with full voting TMR with selective voting
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Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

) Total : 2000 () Total : 1300

Base TMR with full voting TMR with selective voting
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Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

() Total : 2000 : s Total : 1300
35% Improvement
Base TMR with full voting TMR with selective voting
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Thesis proposal: Selective validation for efficient protection

Ex) Reduce expensive voting

=) () |
Exh &up
A IR VL

TMR with the selective voting is more efficient than
TMR with full voting in terms of performance
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Thesis proposal: Selective validation for efficient protection for (i =0; i < iteration; i ++) {

alil] = (b[i]-X) Y; /*XandY are constants */

Optimization by reducing # of store operations

® Our optimization to reduce # of votings

— Reduce the # of store operations by merging store
operations with add and shift operations

b[i] b[i+1]
0x12 Ox34 | .
X X
TR O

Y Y

@a[i] @a[iH]
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Thesis proposal: Selective validation for efficient protection for (i =0; i < iteration; i ++) {

alil] = (b[i]-X) Y; /*XandY are constants */

Optimization by reducing # of store operations

® Our optimization to reduce # of votings

— Reduce the # of store operations by merging store
operations with add and shift operations

‘!’bm ‘!H’umﬂ
0x12 Ox34 | -« ---

ON0:;
a[0] a[1] :| shift sizeof(a[i])

0x1200 0x34

sizeof(a[i])
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Thesis proposal: Selective validation for efficient protection for (i =0; i < iteration; i ++) {

alil] = (b[i]-X) Y; /*XandY are constants */

Optimization by reducing # of store operations

® Our optimization to reduce # of votings

— Reduce the # of store operations by merging store
operations with add and shift operations

0x12 0x34

a[0] a[1]

0x1200

0x34

2 byte

0x1200

| ¢

shift sizeof(a[i])

add a[i+1]

sizeof(ali])

74

2016-04-02
lab



Thesis proposal: Selective validation for efficient protection for (i =0; i < iteration; i ++) {

alil] = (b[i]-X) Y; /*XandY are constants */

Optimization by reducing # of store operations

® Our optimization to reduce # of votings

— Reduce the # of store operations by merging store
operations with add and shift operations

0x12 0x34

a[0] a[1]

0x1200

0x34

2 byte

0x1200+0x34

0x1234

| ¢

| ¢

shift sizeof(a[i])

add a[i+1]

sizeof(ali])

store a[i], a[i+1]

alil, ali+1]
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5. Experiments
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Experiments

Experimental setup

CGRA
Configuration

Benchmarks Generator Simulator
Scheduler

minimum Il
initial Il €< Runtime

® compile and simulate each benchmark kernel with input parameters

— Input parameters: DFG information, CGRA configuration, initial Il
€ DFG information : generated by DFG Generator
€ CGRA configuration : 4 X 4 CGRA, Local register
@ |l : Initiation Interval

® Benchmarks : SPEC 2000, OpenCV
® Scheduler : modulo scheduling (the cost-based scheduling algorithm)

77 2016-04-02 I ab



Experiments

Performance improvement w/ selective voting

Runtime Evaluation of Selective Validation for TMR

7 | @ TMR (Full Voting) Our Technique (Selective Voting) I

=T e v [ E . & B B B B B e )
2 7
s}
S \m 7 7
o
©
g R . L —— == - —— - - -
é .
kS n
i 7
< 7 7 %
= 2 M- - B [ -7, R (— R - - == = R 7 - - = - - = -
o
4

0

& S & & > N 2 S & N )\ 3e) o <
& & & F Y Y F e
S A VA Gl VS & & & S
*k
S = S ot
Benchmarks
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Experiments

Performance improvement w/ selective voting

Runtime Evaluation of Selective Validation for TMR

7 | B8 TMR (Full Voting) ®Our Technique (Selective Voting) I

Normalized Runtime to the Base
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Experiments

Performance improvement w/ selective voting

Runtime Evaluation of Selective Validation for TMR

7 | B8 TMR (Full Voting) ®Our Technique (Selective Voting) I

Normalized Runtime to the Base
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Experiments

Performance improvement w/ selective voting

Runtime Evaluation of Selective Validation for TMR

7 | B8 TMR (Full Voting) ®Our Technique (Selective Voting) I

Normalized Runtime to the Base
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Experiments

Performance improvement w/ selective voting

Runtime Evaluation of Selective Validation for TMR

7 | B TMR (Full Voting) ®Our Technique (Selective Voting) I

Normalized Runtime to the Base

Our selective validation for TMR can improve the performance
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Experiments

Performance improvement w/ selective voting

Runtime Evaluation of Selective Validation for DMR

B Our Technique (Selective Comparison)

DMR (Full Comparison)
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Experiments

Performance improvement w/ selective voting

Runtime Evaluation of Selective Validation for DMR

B Our Technique (Selective Comparison)

DMR (Full Comparison)
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Experiments

Performance optimization w/ store reduction

Normalized Runtime to Base

(=]
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Performance Improvement of Optimization for TMR

BTMR (Full Voting) mOur Technique (Selective Voting) B Our Optimization
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Experiments

Performance optimization w/ store reduction

Normalized Runtime to Base
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Performance Improvement of Optimization for TMR

BTMR (Full Voting) mOur Technique (Selective Voting) B Our Optimization
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Experiments

Performance optimization w/ store reduction

Performance Improvement of Optimization for TMR

BTMR (Full Voting) mOur Technique (Selective Voting) B Our Optimization
7

(=]

Normalized Runtime to Base

N

Benchmarks
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Experiments

Performance optimization w/ store reduction

Performance Improvement of Optimization for TMR

BTMR (Full Voting) mOur Technique (Selective Voting) B Our Optimization
7

N

Normalized Runtime to Base

N

Our optimization with store reduction can further improve the

performance as compared to our selective validation
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Experiments

Performance optimization w/ store reduction

Performance Improvement of Optimization for DMR

DMR (Full Comparison) mOur Technique (Selective Comparison) B Our Optimization

N

Normalized Runtime to the Base

Benchmarks
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Experiments

Performance optimization w/ store reduction

Performance Improvement of Optimization for DMR

DMR (Full Comparison) mOur Technique (Selective Comparison) B Our Optimization

25.2%
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Experiments

Energy consumption w/ optimization

TMR (Full Voting) m®Our Technique(Selective Voting) ®Our Optimization

Energy Consumption of Optimization for TMR
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Experiments

Energy consumption w/ optimization

TMR (Full Voting) m®Our Technique(Selective Voting) ®Our Optimization

Energy Consumption of Optimization for TMR
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Experiments

Energy consumption w/ optimization

TMR (Full Voting) m®Our Technique(Selective Voting) ®Our Optimization

Energy Consumption of Optimization for TMR

aseq ay) 01 uondwnsuo) Abisu3 pazijewoN

Benchmarks

lab

2016-04-02

93



Conclusions

Conclusions

® Reliability is the critical design concern
® CGRA becomes more popular

® Previous proposed techniques have limitations in
terms of area and performance

® Software-based selective validation techniques
— Validation at operation just before store

® Performance improvement
— TMR/DMR with selective validation : 40.9%/9.5%

— TMR/DMR with selective validation + optimization :
45.2%/16.9%

* Previous proposed DMR/TMR techniques : 167%/700%
® Energy consumption savings

— TMR/DMR with selective validation + optimization :
26.1%/13.8%
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Future work

® Continue energy consumption

® Design space exploration

— Tradeoff among reliability, energy consumption and
performance

® Further optimization
— CGRA scheduling algorithm
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Q&A
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Publication

® Paper accept

— Selective validations for efficient protections on
coarse-grained reconfigurable architectures

— Application-specific Systems, Architectures and
Processors(ASAP)

— The 24th IEEE International Conference, June 5-7
2013

® Plan to submit extended version journal(TECS)
— Energy consumption estimation
— Fault coverage

® Plan to submit a paper KCC Conference
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