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Motivation 

 Soft errors can cause significant financial loss 

Japanese and London stock market were halts 

financial loss is quite large 
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Unintended acceleration 

Incorrect operation of 
implanted devices 

 Reliability is related to our life 
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Motivation 

Robot malfunctions 

Fukushima nuclear accident 

 Robot malfunctions due to lots of radiation 



Reliability is important 

2016-04-02 10 

Motivation 
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 - Reliability is directly connected our life  - Vulnerable reliability 

Reliability is an important concern 
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D. Shivakumar et al. “Modeling the effect of technology trends on the soft error rate of combinational logic” 2002 DSN 

Soft errors are becoming a critical design concern 

 Soft error rate  
– Is now 1 per year 
– Exponentially increases 

with technology scaling 
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 Specific kernels in a thread can be power/performance critical 
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 Specific kernels in a thread can be power/performance critical 
 The kernel can be mapped and scheduled for execution on the CGRA 
 Using the CGRA as a co-processor (accelerator) 

– Power consuming processor execution is saved 
– Better performance of thread is realized 
– Overall throughput is increased 

Processor 

co-processor 

A. Shrivastava et al. “Enabling Multithreading on CGRAs” 2011 ICPP 

CGRA becomes more and more popular thanks to 
high performance, flexibility and low power 
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Soft error occurrence in various embedded 
systems can cause catastrophic results 
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Related works 

Paper Key Idea Experiment drawback Comment 

[Alnajiar, 2009] 

dynamic operation modes in CGRA 
architecture to provide the various levels 
of reliability under the performance 
constraint. 

set up 
- compare to the number of gate 
  (using tool : RTL) - flexible protection   

  mechanism 

- area-overhead 
  (implement voter) 
- performance degradation 
  (cant use resource fully) result - area : 26.6% increase 

[jafri, 2010] 
self-checking residue mode for multiplicat
ion and addition operations on DART arch
itecture 

set up 
- compare to original FU, DMR FU and 
  self-checking FU 
  (using STMicroelectronics 130 nm) - less area-overhead    

  compare to DMR 

- area-overhead 
  (implement self-checking) 
- performance degradation    
- only detection 
- not cover specific fault result 

- area : 18% decrease compare to DMR 
- performance : 400% decrease compare  
  to DMR 

[Schweizer, 2011] 

exploiting unused FUs for replications to 
increase the reliability with the minimal 
hardware overhead. 
FEHM (Flexible Error Handling Module) -  
supports DMR and TMR schemes on 
specific target architectures. 

set up 
- compare to TMR and Clustering PE  
  include FEHM - supports DMR and  

  TMR schemes with  
  modified FEHM 
- considering power 

- area-overhead 
  (implement FEHM) 
- cant apply to data    
  intensive application result 

- area : 12.8% decrease compare to TMR 
- power : 1.6~18.6% decrease compare  
  to TMR 

[Schweizer, 2012] 

to resolve previous ([Schweizer, 2011]) lim
itation, multiple contexts to be mapped o
n CGRA by using the concept of temporal 
Redundancy 

set up 

- mapping to CGRA used FFT application 
- estimate required area as context  
  memory is increased 
- Estimate time between read and store 

- enable to apply permanent, 
  transient, timing fault 
- enable to apply any  
  application 

- performance degradation   
  compare to TMR  
  (increase context) 
- still exits area-overhead 

result 
- area : 31% decrease compare to TMR 
- performance : NR/TMR  26%/12%  
  decrease 

[K. Singh, 2006] 
Selective apply combined scheme to code 
that can cause a soft error. 

set up 
- reliability is the percentage of time that  
  FT matrix multiplication can run on raw    
  architecture without system reset 

- no area-overhead 
  (software based technique) 

- limited RAW architecture 
- performance overhead 
- not consider TMR voting 

result - reliability : 89.2%(108 out of 1000 reset) 

[Lee, 2010] 

replication & voter is implemented on PE 
to reduce area overhead; to reduce the 
critical path, add conditional execution & 
column wide bus; thermal impact optimal 
mapping on PE is proposed. 

set up 

- compare base arch with proposed arch                          
  based on RTL 
- ACS(time consuming  operations)  
  module in  viterbi decoder map CGRA 

- software technique 
- area-efficiency   
  (minimal hardware    
   overhead) 

- performance overhead 
  (replication & voter map     
   on PE) 

result 
- area : 12% increase compare to base 
- performance : decrease TMR(700%)/DMR 
  (167%) 

Soft Error : hardware protection 
                software protection 
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 TMR (Triple Modular Redundancy) 
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Module 2 
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implementation 

DMR comparator  
implementation 
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Thesis proposal: Selective validation for efficient protection 
… 
   for ( i = 0; i < iteration; i ++) { 
        a[i] = ( b[i] – X )  Y;   /* X and Y are constants */ 
   } 
… 
 

 Suppose that memory of CGRA is protected against errors 
– Traditional protection methodologies for memory are inexpensive as 

compared to maintaining execution cores 

 Do not replicate the memory operation 
 Synchronization point where corrupt data can propagate 

and cause failure 
– erroneous store operations can eventually cause incorrect outputs 

 The program will be executed correctly if corrupted data is 
not stored in the main memory 
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– Corrupt data in memory  failure 

Base TMR with full voting TMR with selective voting 
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Thesis proposal: Selective validation for efficient protection 

Total : 2000 Total : 1300 
Base TMR with full voting TMR with selective voting 

35% improvement 
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Thesis proposal: Selective validation for efficient protection 

Base TMR with full voting TMR with selective voting 

TMR with the selective voting is more efficient than 
TMR with full voting in terms of performance 
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 Our optimization to reduce # of votings 
– Reduce the # of store operations by merging store 

operations with add and shift operations 

 
0x12 0x34 ∙ ∙ ∙ ∙ ∙ ∙ 

a[0] a[1] 

… 
   for ( i = 0; i < iteration; i ++) { 
        a[i] = ( b[i] – X )  Y;   /* X and Y are constants */ 
   } 
… 
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 Our optimization to reduce # of votings 
– Reduce the # of store operations by merging store 

operations with add and shift operations 

 
0x12 0x34 ∙ ∙ ∙ ∙ ∙ ∙ 

a[0] a[1] 

0x1200 0x34  ∙ ∙ ∙ 

shift sizeof(a[i]) 

… 
   for ( i = 0; i < iteration; i ++) { 
        a[i] = ( b[i] – X )  Y;   /* X and Y are constants */ 
   } 
… 
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 Our optimization to reduce # of votings 
– Reduce the # of store operations by merging store 

operations with add and shift operations 

 
0x12 0x34 ∙ ∙ ∙ ∙ ∙ ∙ 

a[0] a[1] 

2 byte 

0x1200 0x34  ∙ ∙ ∙ 

0x1200+0x34 ∙ ∙ ∙ ∙ ∙ ∙ 

shift sizeof(a[i]) 

add a[i+1] 

… 
   for ( i = 0; i < iteration; i ++) { 
        a[i] = ( b[i] – X )  Y;   /* X and Y are constants */ 
   } 
… 
 

2016-04-02 



Optimization by reducing # of store operations 

75 

Thesis proposal: Selective validation for efficient protection 

 
 

 Our optimization to reduce # of votings 
– Reduce the # of store operations by merging store 

operations with add and shift operations 

 
0x12 0x34 ∙ ∙ ∙ ∙ ∙ ∙ 

a[0] a[1] 

2 byte 

0x1200 0x34  ∙ ∙ ∙ 

0x1200+0x34 ∙ ∙ ∙ ∙ ∙ ∙ 

0x1234 ∙ ∙ ∙ ∙ ∙ ∙ 

shift sizeof(a[i]) 

add a[i+1] 

store a[i], a[i+1] 

… 
   for ( i = 0; i < iteration; i ++) { 
        a[i] = ( b[i] – X )  Y;   /* X and Y are constants */ 
   } 
… 
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Experiments 

Compiler / 
Modular 

Scheduler 
Benchmarks 

DFG 
Generator 

minimum II 
Runtime 

CGRA 
Simulator 

CGRA 
Configuration 

initial II 

 compile and simulate each benchmark kernel with input parameters 
– Input parameters: DFG information, CGRA configuration, initial II 

 DFG information : generated by DFG Generator 
 CGRA configuration : 4 X 4 CGRA, Local register 
 II : Initiation Interval 

 Benchmarks : SPEC 2000, OpenCV 
 Scheduler : modulo scheduling (the cost-based scheduling algorithm) 
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59.6% 

40.9% 
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Experiments 

59.6% 

40.9% 

Our selective validation for TMR can improve the performance 
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20.0% 

9.5% 
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59.9% 

45.2% 

Our optimization with store reduction can further improve the 
performance as compared to our selective validation 
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Experiments 

25.2% 

16.9% 
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Conclusions 

 Reliability is the critical design concern 
 CGRA becomes more popular 
 Previous proposed techniques have limitations in 

terms of area and performance 
 Software-based selective validation techniques 

– Validation at operation just before store 
 Performance improvement 

– TMR/DMR with selective validation : 40.9%/9.5% 
– TMR/DMR with selective validation + optimization : 

45.2%/16.9% 
※ Previous proposed DMR/TMR techniques : 167%/700% 

 Energy consumption savings 
– TMR/DMR with selective validation + optimization : 

26.1%/13.8% 



Future work 
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 Continue energy consumption 
 

 Design space exploration 
– Tradeoff among reliability, energy consumption and 

performance 

 
 Further optimization 

– CGRA scheduling algorithm 



Q & A 
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Publication 
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 Paper accept 
– Selective validations for efficient protections on 

coarse-grained reconfigurable architectures 
– Application-specific Systems, Architectures and 

Processors(ASAP) 
– The 24th IEEE International Conference, June 5-7 

2013 

 Plan to submit extended version journal(TECS) 
– Energy consumption estimation 
– Fault coverage 

 Plan to submit a paper KCC Conference 
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