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감사의글

2017년은유난히도추웠다. 날씨가추운것은그래도견딜수있었지만마음

이춥고힘든것은꽤나견디기가어려웠다. 나이서른이라는숫자가주는의미가

너무나도컸다. 어렸을적이런생각을했다. 나이가서른정도되면,집도있고,

차도있겠지.조금씩머리가커지면서집이나차둘중하나는있겠지라는생각으

로바뀌었다. 그리고서른이된지금아무것도가진것이없다. 그리고그런가진

것없는내가아직도학생이라는사실이너무나도추웠던것같다.

그럼에도드디어 6년의학업을마무리할무언가가나왔다. 학위논문한편을

쓰기위해서다른많은논문을써야만했는데그런논문하나하나를쓸때마다부

족한완성도로인해서항상고민이앞섰다. 그럼에도불구하고부족한논문이라

도제출을하고발표를했던것은내서재속에꽂혀있는완벽한한문장보다는

졸문이라도세상빛을본글에가치를두는내이상한자존심때문이었다. 그리고

내가쓴글로어떠한형태가되었던세상에이야기를하고싶었다. 내가지금무

슨공부를하고있는지,이게무슨가치를가지고있는지에대해말이다.

6년이란짧지않은시간,고마운사람들이많다. 먼저,내가하고있는놀이를

연구라는높이로한걸음도약시켜준지도교수님과연구실친구들에게감사의말

을전하고싶다. 연구가힘든이유는내가업이라고생각하는일이남에게는아

무것도아닌일이아닐수도있다는두려움이다. 그래서때로는내연구의가치

를나보다더잘이해하는협력자의눈길로,때로는연구의가치를냉정하게평가

하는동료연구자의시선으로균형잡힌연구를할수있도록도와준이들이없었

다면박사가되는연구가아닌그냥나혼자하는자기만족에지나지않았을것이

다.

내주위를지켜준사람의공로역시잊을수없다. 박사과정자체가 (공부하고

있는사람조차)쉽게이해할수없는분야를아무나이해하지못하는수준까지파

고들어야하는외로운과정이기때문에곁에사람이없다면쉽게지치기마련이



다. 내가지치는것은그래도괜찮은데,이과정이어려운것은주위사람역시지

치게하는과정이기때문이다. 공부하는것에미쳐서돈을벌어야하는장남의위

치를망각해도이해해주던부모님과,내대신경제적인대들보역할을수행한동

생에게감사의말을다시한번전한다. 또한,적지않은나이임에도나와함께긴

겨울새봄을기다린여자친구역시어쩌면보이지않는터널을같이건너온동반

자일지모른다.

마지막으로내자신에게도감사의말을전하고싶다. 박사과정에들어오면

서나는몇가지목표를세웠다. 그리고그목표를꽤나구체적으로세우려고노

력했다. 하나의좋은학회논문,그리고그좋은논문을확장한완성도있는저널

논문. 경제적인부담을조금이라도완화할수있는장학금수혜. 그리고외국계

기업에서의인턴생활. 지금생각해보면치열하게산덕분에,아니그보다운이

좋은덕분에내가원하는것을그래도모두이룬생활이었다. 짧지않은기간임

에도늘동기부여를하려고바쁘게살았고,그바쁜삶을내가살아있다는증거로

여기며살아온시간이었다.

이렇게감사의말을쓰고있는지금도솔직히말하면두려움이앞선다. 이제

계획을세우고,연구를하고,실험을하고,논문을쓰는과정에익숙해졌는데이

제는다른세계로가야한다는그런두려움이말이다. 다만그두려움은내가학부

졸업을앞두고대학원이라는새로운공간으로가야한다는생각에느끼던두려움

과는다르다. 그때의두려움이새로운일이라는보이지않는것에대한두려움이

었다면,지금은새로운일을할수있기때문에느끼는기대감에가까울지도모른

다. 아마내가박사를준비하면서배운것은컴퓨터아키텍처가아닌그런방법론

일것이다. (물론컴퓨터시스템도충분히배웠습니다.)

다시한번,이글을읽고있는사람들에게도전하고싶다. 고맙습니다.
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ABSTRACT

Comprehensive Resiliency Evaluation for Dependable
Embedded Systems

Yohan Ko
Department of Computer Science

The Graduate School, Yonsei University, Seoul, Korea

When we consider a broad range of embedded systems, it is essential to consider

multiple design parameters, such as performance, power, and even resiliency. A low

power design is just as important as high performance since state-of-art embedded sys-

tems run on limited capacity batteries with a small form factor. In order to meet both

requirements, the supply voltage is lowered through the aggressive technology scaling.

However, decreasing the supply voltage only increases the vulnerability of the systems

due to soft errors, which are transient faults induced mainly by energetic particles such

as neutrons, protons, and even cosmic rays. In order to make mobile embedded sys-

tems resilient against soft errors, several redundancy-based techniques have been pre-

sented, but they lead to significant overheads in terms of performance, power consump-

viii



tion, and hardware area. Selective protections have been presented as an alternative to

cost-effective protections, but how can we ensure whether it is useful or not? We can

estimate overheads in terms of runtime, energy, and area, but it is challenging to estimate

resilience in a quantitative manner.

In order to perform early design space explorations, we have implemented gemV-

tool, which estimates the resiliency of microarchitectural components in a processor

based on a cycle-accurate gem5 simulator. If we can quantitatively estimate resiliency, it

enables us to answer fundamental design questions such as: (i) Can hardware architects

improve the resiliency by just configuring hardware options with comparable perfor-

mance overheads? (ii) Can software engineers improve the hardware-level resiliency

against soft errors? (iii) System designers can alternate ISAs, but how can they ensure

that protection mechanisms for the previous ISA still works for alternative ISA?

Further, our framework can also provide the protection guideline since we can esti-

mate the resiliency with considering protection techniques. In this work, we provide the

protection guideline of parity-protected level 1 data cache for high-level resiliency with

comparable overhead. First off, checking parity at reads only (and not at writes) pro-

vides better protection with fewer power overheads as compared to that at both reads and

writes. Secondly, When implementing parity at the fine-grained granularity for much-

improved protection as compared to coarse-grained parity implementation, the dirty-bits

in the cache should also be applied at the same fine-grained granularity. Otherwise, there

is no improvement in protection.

Key words : Resiliency, Soft error, Vulnerability, gemV
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Chapter 1

Introduction

A soft error is a transient fault in semiconductor devices caused by some sources

both internal and external to the chip. Energy carrying particles such as alpha particles,

protons, low-energy neutrons, even cosmic rays contribute soft errors significantly [1, 2].

The critical charge is the minimum charge causing soft errors, and it is proportional to

chip size and supply voltage. Since soft error rate is inversely proportional to critical

charge, the soft error rate is exponentially increasing with aggressive technology scal-

ing. Even though soft errors are not the permanent hardware malfunction, they can be

essential even for human life. Embedded systems can be used for safety-critical appli-

cations such as automotive [3] and health-care systems.

Many techniques have been presented in various design layers to protect computing

systems against soft errors for several years [4]. These protection methods incur over-

heads in terms of area, performance, and energy consumption since they are based on

hardware redundancy or software redundancy. However, protection schemes are neither

always useful nor continuously robust against soft errors, and sometimes they can fail

to protect systems even with additional overheads [5]. Thus, protection techniques for

embedded systems should be carefully chosen by considering trade-off relationship be-

1



tween resiliency and performance. Performance can be estimated by the runtime or the

number of instructions executed per cycles, but the resiliency cannot be easily quantified

in an accurate and timely manner.

In order to accurately calculate resiliency of microarchitectural components, neutron

beam testing [6] and fault injection campaigns [7] have been exploited to quantify the

resiliency against soft errors. Beam testing uses the cyclotron to expose computing sys-

tems to neutron-induced soft errors. In fault injection campaigns, faults are intentionally

injected into the specific bit of the microarchitectural components in a processor at the

particular time during the execution time. Since exhaustive fault injection campaigns

need to inject faults into all the bits of the entire computing system at every cycle of the

execution time, they are almost impossible [8]. Statistical fault injections based on prob-

ability theory have been presented to reduce the number of experiments [9]. However,

the accuracy of statistical fault injection campaigns still relies on the number of injected

faults. Further, fault injection campaigns and beam testing are costly and difficult to set

up correctly, and they are often flawed [10, 11].

Since neutron beam testing and faults injections are too expensive and slow, a metric

vulnerability, which is the number of bits which can incur system failures during the

execution time in the processor [12, 13], has been presented as an alternative. Assume

that a specific bit b in a microarchitectural component is written at time t, and it is read

by CPU at time t + n. In this scenario, bit b is not vulnerable before t. If there are soft

errors before write operations, they can be overwritten to a new value. However, read

operations can make vulnerable periods since CPU can read corrupted data. Thus, bit b

is vulnerable during the time interval between t and t+ n. Vulnerability is estimated as

2
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Figure 1.1: Thesis overview: Comprehensive resiliency estimation with considering pro-
tection techniques

b × n in this example, and its unit is bit × cycle. The vulnerability of the entire proces-

sor is the summation of these vulnerabilities of all the microarchitectural components.

Vulnerability estimation can be performed in a single simulation unlike fault injections

since it can be done by tracing architectural behaviors of each component.

Several vulnerability modeling frameworks based on cycle-accurate simulators have

been presented [13, 14, 15] in order to implement vulnerability modeling for a proces-

sor. However, their modeling is inaccurate, incomprehensive, and inflexible. First off,

previous schemes cannot provide the accurate vulnerability estimation since they esti-

mate the vulnerability at a coarse-grained granularity. Further, their modelings ignore

the vulnerability of speculatively executed instructions (i.e., squashed instructions due

to the misspeculation), as their presence in the pipeline can, in some cases, cause fail-

ures. Moreover, the accuracy of vulnerability from these tools has not been validated and

published. Secondly, existing vulnerability modelings are not comprehensive since they

have modeled the just subset of microarchitectural components in a processor. Lastly,

previous modelings cannot provide configurable vulnerability estimation, such as vari-

ous ISAs and multi-core systems, because of underlying simulators used.

In this manuscript, we present gemV: a tool for accurate, validated, and comprehen-

sive vulnerability estimation based on gem5 [16] – a common cycle-accurate system-
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level simulator [17] as shown in Figure 1.1. For example, gem5 explicitly models

most of the microarchitectural components of an out-of-order processor, various ISAs

(e.g., ARM, ALPHA, etc.), multicore processors, and even many system calls. Also,

some of the key features of gemV that enable accurate vulnerability estimation are: (i)

fine-grained modeling of hardware components through the use of RTL abstraction in-

side gem5 simulator, (ii) correctly modeling the vulnerability of both committed and

squashed instructions. Moreover, exhaustive fault injection campaigns validate gemV to

97% accuracy with 90% confidence level. gemV also provides comprehensive vulnera-

bility modeling for all the microarchitectural components of out-of-order processors.

gemV presents the efficient toolset for early design space exploration of resiliency

in the presence of soft error failures. It enables us to answer fundamental design ques-

tions from many different perspectives. (i) Microarchitecture designer: Is a dual-issue

processor more vulnerable than a single-issue processor? How does altering the issue

width of the processor affect vulnerability? Reducing the issue width mitigates the num-

ber of vulnerable bits at a given time, but it could also increase the runtime. Since

the vulnerability is related to runtime and hardware bits, the effect of varying the issue

width can only be answered through quantitative experiments. In the same vein, can we

decrease the vulnerability by just changing hardware configurations with comparable

performance? (ii) Software system designer: Can software system designers improve

the hardware-level resiliency against soft errors? In a program, the algorithm, the op-

timization level of the compiler can also affect the runtime and vulnerability. (iii) Ar-

chitecture designer: Architecture designers can alternate ISAs for better performance,

but how can they ensure that protection mechanisms for the previous ISA still work for

4



alternative ISA? The trade-offs between runtime and vulnerability can now be answered

rapidly and accurately by using the gemV toolset.

In our demonstrations of the capabilities of gemV, we perform a broad range of

design space explorations and observe that:

• Vulnerability decreases when increasing issue width from 1 through 3 for a bench-

mark. Beyond this, any increase in issue width does not have a noticeable effect on

vulnerability. We also find that vulnerability varies by changing architectural pa-

rameters like the number of entries in reorder buffer (ROB), an instruction queue

(IQ), load/store queue (LSQ), and pipeline queues. Among configurations, there

is an interesting design configuration with 82% less vulnerability at most 1% per-

formance penalty.

• A software designer can also use gemV to find the least vulnerable algorithm for a

program. For example, we show that switching from a selection sort to a quicksort

algorithm can affect the system vulnerability by 91% with the fixed configurations.

• With the perspective of system designers, it is interesting that the distribution

of vulnerabilities among microarchitectural components is sensitive to the ISA.

While protecting register rename map and register file will be the most effective

in SPARC architecture (more than 75% vulnerability reduction), but the protec-

tion will only reduce the vulnerability by 21% in ARM architecture. In contrast,

protecting history buffer and IQ will be the most effective in ARM architecture in

our study.

Further, our framework can also provide the vulnerability with applying protection
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schemes so that we can achieve protection guideline for each component. In a processor,

a cache is one of the most sensitive microarchitectural components to soft errors [18].

Mitra et al. [19] note that soft errors in caches (unprotected SRAMs) contribute to around

40% in processors, and Shazli et al. [20] have shown that 92% of machine checks are

triggered by soft errors at the level 1 and 2 caches. It is not only because caches occupy

the majority of the chip area, but also because they have high transistor density and

operate at low voltage swings [21]. Since CPU frequently accesses data in caches and

written back to lower-level memory in case of write-back caches, some of the erroneous

bits can be propagated to the lower-level memory or used by CPU. However, not all the

soft errors in the cache memory can cause system failures (i.e., vulnerable) during all

the execution time mainly due to several masking effects. Thus, there is a necessity to

quantify the susceptibility of caches to know how many bits and how long cache data

can be vulnerable.

Architectural vulnerability used to denote the resiliency of a single architecture

component, while vulnerability is used to indicate that of the entire processor. In this

manuscript, we use the term cache vulnerability to denote the architectural vulnerability

of the cache since we analyze the cache resiliency as the domain of protection guide-

line. Cache vulnerability estimation at a block-level granularity is entirely inaccurate

since the basic unit size of data accesses in caches is a word, not a block. For instance,

the particular cache word is vulnerable when CPU reads just a single word of a block.

However, block-level vulnerability estimation defines the whole block as vulnerable, not

just the particular word. The average inaccuracy of block-level estimation is 37% as

compared to more accurate our word-level one. Note that our word-level vulnerability
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estimation includes byte-level granularity since we analyze word-level cache behaviors

for vulnerability estimation. The average inaccuracy is not significant, but the actual

wrong decision based on block-level behaviors can be worsened. It is because that the

difference is aggregated statistics of entire cache blocks during the whole execution time.

First off, block-level analysis can underestimate or overestimate vulnerability as com-

pared to the word-level one, but the inaccuracy only can show the difference between

the underestimation and overestimation. Secondly, the error of each block can be much

larger than the average error of all the blocks. For example, the error of a particular

block is up to 5,700%, while the mean error of all the blocks is only 121% for the same

benchmark, basicmath.

Existing cache vulnerability estimation schemes also ignore protection techniques

even though several methods have been presented for resilient cache memory. These

techniques span the design spectrum from the circuit, microarchitecture, software, and

even hybrid level. In practice, parity and error correction code (ECC) are the most

popular cache protection techniques due to their design simplicity. Parity-based methods

allow the error recovery by bringing data from lower-level memory as long as cache

data is not updated by the processor (i.e., clean state). ECC-based techniques provide

the error recovery regardless of the clean or dirty state. However, it can incur up to

additional 50% hardware area, more than five times power consumption, and about 115%

runtime overheads as compared to unprotected cache [22]. Parity protection is preferred

for higher-level (e.g., level 1) caches while ECC protects lower-level caches (e.g., level

2 or other lower level caches) in common. There are several design choices when we

implement parity and ECC protection, for example: When should we check for parity-
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bit and ECC-bits – at read, write, or both read and write? At what granularity should we

have parity-bit and ECC-bits? At what granularity should we have dirty-bit?

In order to correctly answer these questions, we need techniques to quantitatively

and accurately estimate the susceptibility of cache data to soft errors with or without

protection methods. We have validated the accuracy of our word-level estimation by

extensive fault injection experiments. The logic to estimate vulnerability at a word-level

granularity with the presence of protection techniques is much more involved than the

logic to estimate vulnerability at a block-level granularity without considering protec-

tions. The primary source of complexity comes from the fact that i) the access time

of each word should be logged for word-level estimation while the access time for a

block is needed for block-level estimation; ii) vulnerability estimation at a word-level

granularity may not be independent of the accesses of the other words in the same block.

The contribution of this manuscript includes accurate word-level vulnerability mod-

eling and awareness of protection techniques as shown in Figure 1.1. First off, we have

modeled more accurate word-level vulnerability modeling than previous block-level one

since the basic unit of cache accesses is a word, not a block. Moreover, we have also vali-

dated our vulnerability modeling against exhaustive fault injection campaigns. Secondly,

we have modeled cache vulnerability estimation without and with general protection

techniques such as error detection codes (parity) and error correction codes (Hamming

code). We explore the design space of parity and ECC protections with various protec-

tion configurations based on accurate word-level vulnerability estimation. Our analysis

reveals several interesting and counterintuitive results for cache protection techniques.

• Checking parity at reads provides the better level of protection than checking par-
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ity at both reads and writes. It is surprising since it is more intuitive to believe

that checking parity on both occasions will provide better protection mainly due

to more redundancy. The implication is that better protection can be achieved by

simpler hardware and less overhead of parity checking power.

• In order to achieve higher levels of protection, both parity-bit and dirty-bit should

be implemented at word-level of granularity. It can reduce the vulnerability by

60% as compared to the vulnerability without protections. However, only either

parity-bit or dirty-bit at a word-level granularity does not protect caches efficiently,

i.e., it can reduce the vulnerability by just 15% on average as compared to unpro-

tected caches despite additional hardware overheads.

• Checking block-level ECC-bits only at reads can be still vulnerable because of

other words’ behaviors in the same block. About 10% of vulnerability comes

from unprotected caches remains with checking at reads, while checking at both

reads and writes provides zero vulnerability. If the perfect resiliency is required

for caches, ECC should be checked at both reads and writes, or ECC-bits should

be implemented at a word-level granularity.
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Chapter 2

Related Work

2.1 Necessity of accurate and comprehensive vulnerability es-
timation

With a view to estimating the vulnerability for all microarchitectural components in

a processor, previous works have exploited cycle-accurate, system-level, and software-

based simulators as described in Table 2.1. Mukherjee et al. [13] proposed AVF (Archi-

tectural Vulnerability Factor) based on Asim [23] which simulates Itanium2-like IA64

processors. Li et al. [14] proposed SoftArch which models the error generation and prop-

agation based on the probabilistic theory in Turandot simulator [24]. Sim-SODA [15]

has been proposed to estimate the vulnerability of microarchitectures based on Sim-

Alpha simulator [25]. However, previous works are inaccurate, incomprehensive, un-

available for public use, and inextensible.

First off, most of the existing techniques have estimated the vulnerability at a coarse-

grained granularity although not all bits of a hardware structure are vulnerable for every

instruction. In [13, 14], complex hardware structures in out-of-order processors such

as IQ are modeled as bulk structures. For instance, the predicted next PC address is not

vulnerable since it can only affect the performance by branch misprediction. On the other
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Table 2.1: Comparison between vulnerability estimation tools

Tool Accuracy Comprehensiveness Extensibility Validation

Mukherjee-
AVF
[13]

Not accurate: Instruction
window is treated as a coarse-
grained bulk
Only committed instructions
are considered for vulnerabil-
ity modeling

Register file and
instruction queue are
modeled for vulnera-
bility estimation

IA-64 based architec-
ture based on proprietary
Asim [23] simulator

No
published
results

SoftArch
[14]

Not accurate: Instruction
window is treated as a coarse-
grained bulk
Only committed instructions
are considered for vulnerabil-
ity modeling

Register file and
instruction queue are
modeled for vulnera-
bility estimation

Power-PC architecture
based on proprietary
Turandot [24] simulator

No
published
results

Sim-SODA
[15]

Not accurate: Several hard-
ware structures in the instruc-
tion fetch and issue logic are
modeled as a single hardware
structure
Only committed instructions
are considered for vulnerabil-
ity modeling

Register file, instruc-
tion queue, reorder
buffer, and load store
queue are modeled
for vulnerability
estimation

ALPHA architecture
based on open-source
Sim-Alpha [25] simula-
tor

No
published
results

gemV
(Our proposal)

More accurate: Every struc-
ture is modeled based on
fields that are really used
(Section 4.2.2)
Squashed instructions
are also considered for
vulnerability modeling
(Section 3.1.2)

Register file, in-
struction queue,
reorder buffer, load
store queue, pipeline
queues, and renaming
units are modeled for
vulnerability estima-
tion (Section 3.1.3)

ARM, ALPHA, Power-
PC, MIPS, X86, SPARC
architectures with var-
ious configurations
based on open-source
gem5 [16] simulator
(Section 3.1.4)

Validated
through
extensive
fault in-
jection
(Sec-
tion 3.2.3)
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hand, the current PC address is vulnerable since it can cause incorrect program flow.

In [15], several hardware structures in the instruction fetch and issue logic are modeled

as a single hardware structure – ”instruction window.” They do not model individual

hardware structures such as pipeline queues, instruction queue, and load/store queue.

Thus, these components cannot be evaluated for the vulnerability modeling while gemV

can estimate the vulnerability at a fine-grained granularity as described in Section 4.2.2.

Secondly, squashed instructions are ignored for the vulnerability estimation in pre-

vious works. An instruction can be “squashed” due to the misspeculation in an out-of-

order processor. Under these conditions, most bits used by the instruction are consid-

ered not vulnerable, but individual bits can be still vulnerable. For instance, rename map

holds the index mapping between architectural and physical registers. The rename map

uses a history buffer to maintain the previous mapping of an architectural register. It

is why when an instruction is squashed; the processor state can be rolled back to the

last committed instruction. When an instruction is squashed, the history buffer can be

vulnerable since it is read to roll-back the rename map. However, previous vulnerability

estimation tools consider all squashed instructions to be not vulnerable, but gemV con-

siders both committed and squashed instructions for vulnerability modeling as described

in Section 3.1.2.

Thirdly, previous tools are incomprehensive in their vulnerability modeling since

they estimate the vulnerability of just a small subset of the microarchitectural compo-

nents of the processor. In [13, 14], they do not model the vulnerability estimation for

register files, memory hierarchy, and pipeline structures. Sim-SODA considers more mi-

croarchitectural components than the other estimation tools, but it still does not model
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the vulnerability estimation for pipeline queues and renaming units which contribute the

system vulnerability significantly as described in Section 3.1.3.

Lastly, previous tools are inflexible and inaccurate due to the limitations of simu-

lators they use. Vulnerability estimation techniques in [13, 14] use the proprietary and

private tools which model Intel’s Itanium 2-like processor and IBM’s Power-PC, respec-

tively. Sim-SODA estimates the vulnerability based on publicly available Sim-Alpha

simulator, but it is limited to ALPHA and single-core processors. Moreover, the accu-

racy of vulnerability estimation can be suffered from inaccurate simulation since their

modelings are based on simulated behaviors of components. Sim-Alpha has been shown

to be up to 43% inaccurate in runtime estimations [26] as compared to real hardware ar-

chitecture. On the other hand, gemV can provide the flexible and accurate vulnerability

modeling by leveraging gem5 simulator as described in Section 3.1.4.

2.2 Vulnerability estimation for cache memory

Cache memory is one of the most vulnerable microarchitectural components in pro-

cessors against soft errors. It is not only because those caches occupy lots of area in

processors, but also because CPU frequently accesses that cache data and quickly prop-

agated to lower-level memory. In order to improve the resiliency of cache memory with-

out area cost, Li et al. [27] proposed early write-back policy. Early write-back policy

combines the performance efficiency of write-back with the resiliency of write-through

policy by exploiting the least recently used algorithm or dead-time based approaches.

Manoochehri et al. [28] proposed the correctable parity protected cache (CPPC) to cor-

rect errors which can be detected by parity. CPPC corrects soft errors including spatial
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multi-bit errors at the dirty state by multi-dimensional parity-bits without the severe

overhead in terms of hardware area and performance. However, they can be still vulner-

able to temporal multi-bit upsets and errors in the cache tag array and status bits such as

dirty-bits.

Soft errors on variables do not induce system failures due to the software masking

effects, e.g., errors in multimedia data in a program can degrade the quality of service,

but they do not result in system failures. PPC (partially protected cache) [29] improved

the resiliency with the comparable performance overheads by enhancing the software

masking. PPC only protects failure-critical data such as control variables based on data

profiling at the compile time. On the other hand, they do not protect multimedia data

since errors on multimedia data cause loss in quality of service instead of system failures.

Smart cache cleaning [30] protects specific cache blocks at specific periods by applying

the hardware-software hybrid methodology. At the software level, we can protect data

efficiently by software-based or hybrid-based selective protection, but the decision of

importance in data is an incredibly complex task.

In order to mitigate the resiliency analysis overheads of cache memory and to provide

the accurate resiliency reflecting various masking effects, CVF is proposed based on

cache access patterns [31, 32]. Data in a write-back cache is vulnerable, if it will be

read by the processor, or will be written back (e.g., eviction of a dirty cache line) into

the memory. If it is overwritten or just discarded (e.g., eviction of a non-dirty cache

line), then it is not vulnerable. In a system, the resiliency metric – vulnerability, is

a measure of the probability of soft errors during the period when data is exposed in

the cache which is predominantly dependent on the data access pattern of the program.
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Vulnerability estimation of a cache block can be implemented at two granularity levels:

a) block-level – when every access to a word in the cache-block, is considered to be an

access to the whole block or every word in the cache-block has the same data access;

b) word-level – when every access to a word in the cache-block, is considered as an

access to each respective word in the block. In a cache-block composed of multiple

words, the total vulnerability of the block is an accumulation of the vulnerabilities of the

individual words in the block; which is based on the data access patterns of the words in

the cache-block.

However, how can we measure the resiliency of caches without protections accu-

rately? How much do these protection techniques afford as compared to the resiliency

without protections? Thus, there is a necessity to quantify the susceptibility of caches

against soft errors without protection or even with protection techniques. Further, we

also need to implement vulnerability modeling for other microarchitectural components

including cache memory to explore design space in terms of power consumption, per-

formance, and resiliency.
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Chapter 3

Our Approach

3.1 gemV: Fine-grained and comprehensive vulnerability es-
timation

A vulnerability has been used as an alternative metric for the failure rate of archi-

tectural components against soft errors. A bit b in a microarchitectural component at the

specific time t during execution time is vulnerable if a soft error into (b, t) may result in

system failure. If not, (b, t) is not vulnerable. The vulnerability is the sum of these vul-

nerable bits in microarchitectural components of a processor. The unit of vulnerability

is bit × cycle in order to consider both time and space domains. Assume that 2 bits in

a microarchitectural component are vulnerable during five cycles. The vulnerability of

this microarchitectural component is 10 bit × cycles (= 2 bits × 5 cycles). In a processor,

a bit which may induce failures should be tracked to estimate the vulnerability based on

behaviors of microarchitectural components.

In this manuscript, we have implemented gemV-tool, which estimates vulnerability

for microarchitectural components in a processor based on the cycle-accurate gem5 sim-

ulator. We have named our vulnerability modeling frameworks “gemV-tool” due to two

following reasons. ”V” of gemV-tool stands for both vulnerability and Roman numeral 5
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Figure 3.1: Fine-grained vulnerability tracking for pipeline queues for simple instruc-
tions such as load (red), add (blue), and store (green)

(5 from gem5). In modeling of gemV-tool, we consider single-bit soft errors throughout

a program execution in caches for simplicity. The system vulnerability is the sum of

vulnerabilities of all the microarchitectrual components in a processor. We use the ARM

v7a processor architecture and have compiled our suite of benchmarks using GCC cross-

compiler for ARM (ver. 4.6.2), run them on gemV-cache in system emulation mode, and

gathered vulnerability statistics in just one simulation.
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3.1.1 Fine-grained modeling

Fine-grained modeling is important because not all the bits of a hardware structure

are vulnerable at the same time. Thus, vulnerability modeling should consider accessed

bits for each microarchitectural component. Figure 3.1 shows the fine-grained vulner-

ability estimation for pipeline queues for simple instructions such as load (load r1, r2),

add (add r3, r1, r2), and store (store r1, r2). Pipeline queues (fetch, decode, rename,

and IEW: issue, execution, and writeback) hold the information of each instruction be-

tween pipeline stages. For example, fetch queue holds the data which will be used by

the decode stage. Pipeline queue contains sequence number of instructions (SeqNum),

source register index (R source 1 and 2), destination register index (R destination), PC,

predicted next PC (PredPC), memory address (MemAddr), and data (MemData). In Fig-

ure 3.1, load instruction (load r1, r2) updates the data in r1 by accessing memory address

in r2. And, r3 is updated by the addition of r1 and r2 through an add instruction (add

r3, r1, r2). Store instruction (store r1, r2) updates the memory address r1 with the data

stored in r2.

First off, our fine-grained vulnerability estimation tracks just accessed fields in pipeline

queues, not all the fields in pipeline queues. For example, all the pipeline queues hold

the predicted next PC address since processors use branch prediction for better perfor-

mance. Even though branch prediction is incorrect, it only affects the performance and

does not induce failures. Thus, the predicted next PC is not vulnerable regardless of

instructions. And, instructions determine vulnerabilities of accessed fields differently.

The destination registers (r1 and r3, respectively) are vulnerable since they are updated

by these instructions. However, store instruction does not update destination register,
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and it does not have vulnerable periods in destination register fields. On the other hand,

load instruction uses one source register (r2), and the second source register index is not

vulnerable. Vulnerable fields can be different between ALU and memory instructions.

In Figure 3.1, ALU instruction (add) does not access the memory-related fields (mem-

ory address and data), while memory instructions (load and store) have the vulnerable

periods in these fields. In [33], for an ARM-v7a pipeline, 71 bits are vulnerable at the

rename queues for ALU instructions, while 132 bits are vulnerable to memory-reference

instructions.

Secondly, our fine-grained vulnerability estimation only tracks the vulnerable du-

ration of accessed fields. For example, the just sequence number is vulnerable after

IEW stage since the other fields are not used at the commit stage. For memory opera-

tions (load and store), memory address and data are not vulnerable from fetch to rename

stages. It is because that the memory reference is calculated by accessing physical regis-

ters after the rename stage. Thus, memory address and data can be overwritten although

bits in these fields are flawed before the rename stage. If we estimate the vulnerability

at a coarse-grained level, all the fields in pipeline queues are defined as vulnerable from

fetch to commit stages.

Fine-grained modeling is also essential for cache memory for accurate vulnerability

estimation. In [34], block-level tracking of vulnerability in the cache can lead to signifi-

cant error since the basic unit of cache behaviors is a word, not a block. Cache memory

consists of several blocks, and each block is composed of several words. Data is brought

into the cache memory (incoming) and evicted at the block-level while its write and read

operations can occur at the word-level. However, coarse-grained modeling considers
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Figure 3.2: Inaccuracy of coarse-grained vulnerability estimation as compared to fine-
grained one

every behavior in the cache memory as the block-level one, not the word-level one. On

the other hand, our fine-grained vulnerability modeling tracks the word-level behaviors.

Overall, for the whole cache blocks, coarse-grained block-level vulnerability mod-

eling can result in inaccurate estimation by 37% on average among several benchmarks

from SPEC CPU2006 [35] and MiBench [36] suites as compared to the fine-grained

word-level one as shown in Figure 3.2. Thus, the block-level cache vulnerability esti-

mation can be incredibly inaccurate. Further, for a cache block, tracking vulnerability at

the coarse-grained modeling overestimates its vulnerability by up to 57 × as compared

to the fine-grained one for the benchmark basicmath in our study.

In order to achieve fine-grained vulnerability estimation in gemV, we instrument

every hardware component modeled in the gem5 out-of-order processor with a vulnera-
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bility tracker, a data structure which tracks the read/write accesses on each field of each

component and thereby computes their respective vulnerable periods at the fine-level

granularity (bit-level). In our vulnerability tracker, with the knowledge of the type of

instruction accessing the hardware, instruction specific vulnerability modeling can be

applied. For instance, if an instruction is passing through the pipeline stage, the vul-

nerability tracker only tracks the vulnerable fields at the vulnerable time as shown in

Figure 3.1. For the cache, accesses to a word in a cache block is monitored individu-

ally, and based on the configured working of the cache architecture (movement of blocks

between cache levels and memory), the vulnerable periods are computed accurately.

3.1.2 Modeling with both committed and squashed instructions

We also achieve accurate vulnerability estimation by handling the particular case of

an instruction getting squashed. Previous works do not update the vulnerability in case of

squashed instructions, but individual bits in specific microarchitectural components are

still vulnerable. The rename map holds a mapping between architectural and physical

registers. The rename map uses a history buffer to maintain the previous mapping of

an architectural register. Figure 3.3 depicts the register renaming case for an exemplary

instruction, load r1, r2, and currently architectural registers r1 and r2 are mapped to

physical register index 10 and 20, respectively. For the source register, r2 in the rename

map is accessed, and source physical register index remains to 20. For the destination

register, r1 in the rename map is accessed, and then its physical register index, 10, is

propagated to old physical register index in the history buffer. And, the destination

register is newly mapped to 11, and new physical register index in the history buffer is

updated with this renamed physical register index (11) since register renaming is needed
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squashed instructions for accurate vulnerability estimation
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to be recovered if the instruction is squashed.

The sequence number and old physical register index are vulnerable in case of com-

mitted instructions as shown in Figure 3.3(a). For the committed instruction, architec-

tural register index and new physical register index in the history buffer are not vul-

nerable since rename map will hold the mapping between them. Thus, history buffer

does not need to maintain them. However, sequence number and old physical register

index in the history buffer are still vulnerable since this index will be accessed to free

the corresponding physical register (errors in this field can free incorrect register). On

the other hand, all the fields in the history buffer would be defined as vulnerable based

on coarse-grained modeling. It can result in a 23% increase in vulnerability of history

buffer estimated by coarse-grained methods as compared to fine-grained tracking for

history buffer in a simple benchmark, matrix multiplication.

If the instruction is squashed, all the fields in the history buffer are vulnerable. Se-

quence number, architectural register index, and old physical register index are vul-

nerable since they are requested to undo the register renaming, 21 to 11 as shown in

Figure 3.3(b). New physical register index is also vulnerable since it is accessed to free

the corresponding physical register. Interestingly, sequence number and old physical

register index in the history buffer are always vulnerable regardless of the instruction

commitment (or squash). If we do not estimate the vulnerability in case of squashed

instructions, we ignore 35% of the vulnerability of the history buffer as compared to the

accurate modeling even for a simple benchmark, matrix multiplication.

For accurate and comprehensive estimations in gemV framework, we introduce data

structure, history, to gem5 simulator to trace recent accesses of every field in the entry
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of microarchitectural components with considering instruction commitment. Data struc-

ture history consists of tick, operation, and sequence number. tick has the timing

information when an access to a microarchitectural component takes place. operation

holds a type of operations such as invalid, incoming, read, write, and eviction. sequence number

holds the order of instructions to trace whether an instruction is committed or squashed.

gemV estimates the vulnerability of each component by keeping track of history and

analyzing behaviors and returns the system vulnerability as the sum of all the component

vulnerabilities at the end of simulations.

3.1.3 Comprehensive modeling

gemV provides comprehensive vulnerability modeling since we have modeled the

vulnerability of all microarchitectural components in out-of-order processors such as

pipeline queues. We have also modeled the complete register renaming process between

the physical register to architectural one by tracking behaviors and vulnerabilities in the

rename map and history buffer with considering instruction commitment or not. Com-

prehensiveness is an outstanding quality to study the breakdown of vulnerabilities of

a specific microarchitectural component as a portion of the total processor vulnerabil-

ity. It is useful in studying the effectiveness of new protection mechanisms and also in

designing new protection mechanisms to target the hardware structure contributing the

highest percentage of the overall system vulnerability. Figure 3.4 shows the breakup of

processor vulnerability in the default configuration of gem5 ARM out-of-order proces-

sor running stringsearch benchmark. More than half of the total system vulnerability

(54%) that we model has not been modeled in previous works (i.e., pipeline queues and

renaming unit). Thus, gemV can provide the entire system-level vulnerability instead of
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Figure 3.4: More than half of the vulnerability (i.e., vulnerabilities of pipeline queues
and register renaming units) has not been considered in previous frameworks

the just sum of vulnerabilities of a subset of microarchitectural components.

3.1.4 Modeling based on accurate and flexible gem5 simulator

gemV can provide the accurate vulnerability modeling due to the accuracy of gem5

simulator. Since vulnerability modeling is based on simulated behaviors of each mi-

croarchitectural component, the accuracy of simulation affects that of vulnerability es-

timation. We have exploited gem5 simulator to implement the vulnerability modeling

of out-of-order processors, and gem5 can provide up to 99% accuracy as compared to

the real hardware board [17]. Moreover, gem5 simulator is updated actively by both

developers and software engineers since it is based on open source infrastructure.

gemV can also perform flexible vulnerability modeling in its support for multiple
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ISAs, multicores, and system call simulation. Due to this, gemV offers several advan-

tages in vulnerability estimation over previous works. First of all, gemV can estimate

vulnerability irrespective of the underlying ISA. It can be used in estimating vulner-

ability of the same program across different ISAs such as X86, ARM, SPARC, and

ALPHA as demonstrated in Figure 4.8. Further, gemV can estimate the vulnerability

of an application running on out-of-order processors in both single core and multi-core

configurations.

Thus, gemV is capable of estimating vulnerability for commodity off-the-shelf (COTS)

processors. We achieve this by taking advantage of the gem5 platform as an accurate and

complete simulator framework and further build on it by modeling protection techniques

such as parity and ECC protected caches. Several modern and popular embedded proces-

sors such as the ARM1156T2S, ARM Cortex A8, and AM3359 [5] use parity protection

for reads and writes in their caches. The vulnerability of programs running on such

processors can be studied using gemV.

3.1.5 Validated modeling

In order to validate our vulnerability estimations in gemV, we perform extensive

fault injection campaigns in all the microarchitectural components in gem5 as listed in

Table 3.1. For each microarchitectural component, we inject a single bit-flip in a mi-

croarchitectural bit chosen at random, at randomly selected cycle per each execution of

a program in gem5. We inject 300 faults per component for each of ten benchmarks from

MiBench [36] and SPEC CPU2006 [35] for the comprehensive simulations. Note that

gem5 simulator shares the same information of instructions among ROB, LSQ, and IQ,

i.e., a bit flip into one component can affect the behaviors of all these three components.
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Thus, we modify gem5 by duplicating fields in order to observe single bit flip’s impact

on a specific component exclusively.

In our fault injection campaigns, we run 300 simulations per microarchitectural com-

ponent of each benchmark. Theoretically, 300 simulations are extensive enough to ob-

serve the statistical fault injection-based experiments regardless of an initial population

size with the 90% confidence level [37]. Experimentally, we also validate that 300 runs

can provide the stable results for all the components as compared to validation results

with more than 300 runs. We have injected 1 through 2,000 single-bit flips randomly by

incrementing 1 for each microarchitectural component into a benchmark. If the number

of runs is smaller than 300, the accuracy is unstable. However, if the number of runs is

equal to or larger than 300, the accuracy is stable. Indeed, the difference is less than 2%

among all the runs over 300 in our simulations. Thus, 300 runs per microarchitectural

component should be large enough to validate gemV with fault injection campaigns.

In our fault injection campaigns, we consider single bit faults, not multi-bit soft

errors. With technology scaling, multiple-bit soft errors are increasing, and they should

be considered for modern embedded systems. However, the multiple-bit error rate is

much lower than that of single-bit errors. For instance, the soft error rate of double bit

soft errors is just 1/100 as compared to that of single bit soft errors [38]. Thus, we do

not consider multiple-bit soft errors in this manuscript for brevity’s sake.

Out of 3,000 simulations for each microarchitectural components, we can observe

matched or mismatched cases. For example, Table 3.1 shows 2,899 matched and 101

mismatched out of 3,000 fault injections for the register file. It is the matched case

when a fault injection causes a failure and gemV returns that the fault-injected bit is
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Table 3.1: gemV validation against exhaustive fault injection campaigns. 300 faults
injected per component for each of the following benchmarks: matrix multiplication,
hello world, stringsearch, perlbench, gsm, qsort, jpeg, bitcount, fft, and basicmath

Component Faults
Injected

Matched
Results

Mismatched
Results

Accuracy
(in %)

Register file 3,000 2,899 101 96.63

Rename map 3,000 2,748 252 91.60

History buffer 3,000 2,781 219 92.70

Instruction queue 3,000 2,978 22 99.27

Reorder buffer 3,000 2,760 240 92.00

Load-store queue 3,000 2,979 21 99.30

Fetch queue 3,000 2,890 110 96.33

Decode queue 3,000 2,902 98 96.73

Rename queue 3,000 2,827 173 94.23

I2E queue 3,000 2,959 41 98.63

IEW queue 3,000 2,873 127 95.77

Overall Accuracy 96.78

vulnerable at the selected cycle or when a fault injection causes a non-failure, and it is

non-vulnerable. Otherwise, it is the mismatched case. A simulation is declared as a

failure in our experiments if either the system crashes or it results in the incorrect output.

It is also a failure if the system halts due to a fault injection even though it returns

the correct output. The vulnerability is estimated by gemV tool as described in the

Section 3.1. Thus, the accuracy of validations of gemV with fault injection simulations

for each component is defined as TheNumber of MatchedCases
The Total Number of Simulations . For example, if gemV

predicts that a bit is vulnerable, then the corresponding fault injection run should result

in an incorrect output or program failure. As shown in Table 3.1, we observe 2,899

matched ones and 101 mismatched results for the register file, giving us an accuracy of

96.63%.
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Note that we need to adjust our validation numbers in order to calculate the over-

all accuracy of validations of gemV for the entire microarchitecture in a processor.

We suppose that soft error rate is proportional to the size of each component, and so

is the rate of fault injections. For instance, if the sizes of component A and B are

99 and 1, respectively, the soft error rate of A is 99 times larger than that of B. Un-

der the assumption that accuracies of vulnerability estimations in A and B is 50% and

10%, respectively, the overall accuracy of A and B is 0.5×99+0.1×1
99+1 = 49.60(%), not

0.5+0.1
2 = 30(%). Thus, it is fair to define the overall accuracy of validations of gemV

as
∑All Components

Component=k Sizek×Accuracyk
Total Size by considering the feature of soft error rate. Table 3.1

lists the results of our fault injection experiments for each microarchitectural compo-

nent. The results show that component vulnerability estimated using gemV is about

97% accurate.

Vulnerability estimation from gemV seems highly accurate for all the microarchitec-

tural components in processor since benchmarks have been chosen in order to minimize

the software-level masking effects. However, there still exists 3% inaccuracy as com-

pared to fault injections due to following reasons even though register data is read by

committed instructions. First off, dynamically dead instructions can induce the mis-

matched case. If the result of an instruction is not used any more, this instruction is

dynamically dead [13]. And, dynamically dead instructions do not affect the program

output any longer. Thus, it is possible whether gemV concludes specific fields for a com-

ponent when an instruction resides are vulnerable while this instruction does not cause

the failure since it is dynamically dead.

Secondly, vulnerability estimation can be mismatched with the failure rate due to
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the masking effects from logical instructions [13]. Assume that the result of a logical

AND instruction of values in two registers goes to the destination register. If the value

of one input register is 0, then the result of this logical AND is always 0 even though

fault injections might change the value in the other input register. On the other hand, the

result of OR operations is always one if one input register data of OR instruction is 1.

Lastly, incorrect program flow can make vulnerability estimation mismatched since

it is considered vulnerable in gemV while it can still result in the correct output in fault

injections. For example, soft errors on PC address or branch target address can induce

the incorrect program flow, but it may not affect the final program output in certain

cases [39]. Our analyses reveal several mismatched cases as stated above such as dy-

namically dead instructions, logical masking effects, and uninfluential program flows.

If we exclude these mismatched cases for the accuracy calculations, gemV can be more

matched causing higher precision.

3.2 Accurate cache vulnerability estimation at a word-level
granularity

In order to accurately estimate the cache vulnerability, we have implemented vulner-

ability estimation tools with protections for caches, named gemV-cache [5] by extending

gemV-tool. The vulnerability of a cache block is the sum of vulnerable periods in cycles

of all cache words from incoming through eviction. Thus, the vulnerability of a cache is

the sum of vulnerabilities of all cache blocks during a program execution, and the unit

of cache vulnerability is byte × cycle. We have performed extensive experiments with

gemV-cache over benchmarks from MiBench [36] and SPEC CPU2006 [35] suites. We

use the ARM v7a processor architecture with default L1 cache configuration as direct-
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Figure 3.5: Example demonstrating the vulnerability of a data, over different data ac-
cesses

mapped 4 KB with 64-byte block size. It is just one set of parameters for our simulation

studies. gemV-cache is configurable as is the gemV-tool framework. For instance, we

can also configure ISAs and number of cores which are not directly related to cache

configurations.

In a system, the resiliency metric – vulnerability, is a measure of the probability of

soft errors during the period that data is exposed in the cache, which is predominantly de-

pendent on the data access patterns of the program as shown in Figure 3.5. First off, data

is brought into the cache memory (incoming). If data is written by write operations after
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incoming, it is not vulnerable as shown in Figure 3.5(a) since it does not affect system

behaviors. If cache data is overwritten by write operation after write or read operations,

it is not vulnerable since the soft error induced data can be overwritten. Based on this

vulnerability definition, write operations always make periods non-vulnerable from the

last behavior to the current write operation as shown in Figure 3.5(b) and Figure 3.5(c)

since it overwrites the corrupted data (no impact on system behaviors and propagation)

if a soft error occurred. If cache data is simply discarded (e.g., eviction of a non-dirty

cache line), it is also not vulnerable as shown in Figure 3.5(d). Since cache data is

identical to the data in lower-level memory, it does not update lower-level memory.

On the other hand, cache data is vulnerable if it will be read by a processor since it

can affect system behaviors. If cache data is read after data incoming, it is vulnerable

since reading corrupted data affects system behaviors as shown in Figure 3.5(e). Read

operations always make periods vulnerable from the last behavior to the current read

operation as shown in Figure 3.5(f) and Figure 3.5(g) since the corrupted data is read by

processor execution, affecting the system behavior, i.e., inducing the high possibility to

change the original system behaviors and to result in incorrect outputs or even system

crashes. Data in a write-back cache can also be vulnerable if it will be written back into

the lower-level memory since it propagates corrupted data to system memory. If cache

data is written back at the dirty state, it is defined as vulnerable as shown in Figure 3.5(h).

CVF is the probability that a single-bit error in the cache will result in a system fault

or failure. CVF us calculated as vulnerable bytes and their periods, vulnerability in byte

× cycles, over the total cache size and access time as described in (3.1). The denominator

of CVF equation is the same for block-level and word-level vulnerability estimation.
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The denominator of CVF is the product of cache size in bytes and total execution time in

cycles, and it is not different for vulnerability modeling between block-level and word-

level. Indeed, the difference between block-level and word-level vulnerability modeling

is numerator, vulnerability, as shown in Figure 3.6.

CV F =
vulnerability (byte× cycles)

cache size (byte)× total execution time (cycle)
(3.1)

3.2.1 Vulnerability estimation at a block-level granularity is inaccurate

We have estimated the vulnerability at a word-level granularity since the basic unit

of data access in the cache is a word, not a block, in order to achieve the vulnerabil-

ity accurately. Figure 3.6 shows differences of vulnerabilities (shaded region) between

word-level and block-level estimations under a simple scenario where a block (Block)

containing two words (WORD0 & WORD1) is brought at t0 and evicted at t4. We con-

sider two cases. The data stored in WORD0 is read at t1, t2, and t3 in Case 1, while

they are written in Case 2. A single-bit soft error for the entire scenario is assumed in a

write-back cache, and each period (ti, ti+1) is considered as one cycle for brevity’s sake.

We also assume that each word contains one-byte data.

It is much more complex to estimate the vulnerability based on word-level vulner-

ability estimation than block-level one. The access information per word in a block

is required and analyzed for word-level modeling, while the only access information

per block for block-level modeling is required. Figure 3.6 shows two examples where

previous block-level vulnerability modeling cannot provide the accurate modeling as

compared to our word-level one. At both cases, one BLOCK contains two words such

as WORD0 and WORD1, and read and write operations occur at the word-level while
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Figure 3.6: Block-level and word-level vulnerability estimation exemplary scenarios
without protection techniques

incoming and eviction happens at the block-level. Also, note that each time interval be-

tween tn and tn+1 is assumed to one cycle and the word size to one byte for simplicity.

Case 1 consists three consecutive read operations of WORD0 at t1, t2, and t3 after the

incoming at t0, and the eviction at t4. Case 2 consists three consecutive write operations

of WORD0 at t1, t2, and t3 after the incoming at t0, and the eviction at t4.

In Case 1, the read operations at t1, t2, and t3 make the period from t0 to t3 of

WORD0 vulnerable according to the vulnerability definition. Note that the read oper-

ations of corrupted data can affect the system behaviors, i.e., vulnerable. The interval

(t3, t4) of WORD0 and (t0, t4) of WORD1 are not vulnerable due to the eviction at the

clean state at t4. Note that the cache data is not written back to the lower memory, i.e.,

no propagation of corrupted data and non-vulnerable, if it is clean under the write-back

policy. Thus, our accurate word-level modeling estimates three as the vulnerability of
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this BLOCK under Case 1 where vulnerabilities of WORD0 and WORD1 are 3 and 0

byte × cycles, respectively. However, block-level estimation models this word access

behaviors, i.e., read operations of WORD0 at t1, t2, and t3 as block access ones (two

bytes of block for three cycles) and it estimates the vulnerability as 6 byte × cycles (=

3 cycles × 2 bytes) as shown in Figure 3.6 (left one). Thus, block-level vulnerability

overestimates, i.e., V ulblock (6 byte × cycles) is larger than V ulword (3 byte × cycles)

which is correct in Case 1.

In Case 2, the write operations at t1, t2, and t3 make the period from t0 to t3 of

WORD0 non-vulnerable according to the vulnerability definition. Note that the write

operations onto the corrupted data can erase the impact of induced soft errors, i.e., non-

vulnerable. However, the eviction at dirty state at t4 makes (t3, t4) of WORD0 and (t0,

t4) of WORD1 vulnerable. Note that the corrupted data will be propagated to lower-

level memory at the eviction if it is dirty under the write-back policy. Thus, our accurate

word-level modeling estimates five as the vulnerability of this BLOCK under Case 2

where vulnerabilities of WORD0 and WORD1 are 1 and 4 byte × cycles, respectively.

However, block-level estimation models this word access behaviors, i.e., write opera-

tions of WORD0 at t1, t2, and t3 as block access ones (two bytes of a block for three

cycles) and they are all non-vulnerable. Thus, it just estimates the vulnerability as 2 byte

× cycles (= 1 cycle × 2 bytes) as shown in Figure 3.6 (right one). Thus, block-level

vulnerability underestimates, i.e., V ulblock (2 byte × cycles) is smaller than V ulword (5

byte × cycles) which is correct in Case 2.

Figure 3.7 plots L1 data CVF without protection over benchmarks with gemV-cache.

In Figure 3.7, X-axis represents benchmarks sorted in the ascending order of CVF and
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Figure 3.7: Inaccuracy of block-level CVF estimations. Block-level vulnerability esti-
mation is up to 121% inaccurate for the benchmark basicmath.

Y-axis represents CVF. The dark bars show the CVF at our word-level granularity, while

the light bars for each benchmark show the CVF when the vulnerability is estimated

at a block-level granularity. We make several interesting observations from this graph.

The difference between CVF estimations at word-level and block-level granularity varies

with benchmarks. The maximum inaccuracy is 121% for basicmath benchmark, while

the average is 37%. Even though the average inaccuracy is not much, the maximum in-

accuracy is quite significant. Therefore, only block-level estimation can be significantly

erroneous although block-level estimation is easier to understand and implement. More

detailed analysis and breakdown of the differences will be in Section 3.2.2.

We also find that the block-level CVF is almost always (except for the lbm bench-

mark) larger than word-level CVF in Figure 3.7. It is because of two important reasons.
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The first reason is that a read to a word is considered as a read to the whole block with

block-level vulnerability estimation. The accesses to a cache block are not evenly dis-

tributed among words in the cache block. CPU will read some specific words more often

than other words in common. For example, in basicmath benchmark, only 4 bytes out of

64 bytes in a cache block are read by the CPU for about 98% of the whole time. More-

over, 80% of cache operations are read operation. In this case, block-level estimation al-

ways updates the vulnerability of the entire block (which is inaccurate) while word-level

estimation only updates the vulnerabilities of the specific words (which are accurate).

The second reason comes into play when a clean cache block is evicted. For example,

about 77% of cache blocks are evicted at the clean state in the basicmath benchmark.

Block-level estimation calculates that the interval from the last behavior of a block to its

eviction is non-vulnerable. However, word-level estimation calculates that each interval

from the last behavior of each word to the block’s eviction is non-vulnerable. The sum

of the non-vulnerable periods of each word in word-level CVF is larger than the non-

vulnerable period of the block in block-level CVF, which is why block-level CVF can be

more significant than word-level CVF in most cases. However, word-level CVF is larger

than block-level CVF for the benchmark lbm. The main reason is that data evict at the

dirty state rather than the clean state. In the case of eviction at the dirty state, block-level

estimation decides the interval between the last behavior of that block and the block’s

eviction vulnerable. However, accurate word-level estimation decides the interval be-

tween the last behavior of each word to the block’s eviction in that case. Thus, the sum

of vulnerable periods in each word can be more considerable. Indeed, 81% of evictions

occur at the dirty state for the lbm benchmark, while 34% on average occur at the dirty
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state for other benchmarks.

Another interesting observation from Figure 3.7 is that CVF varies quite significantly

among the benchmarks. Benchmark mcf has CVF of just 0.17, but for lbm benchmark,

the CVF is about 0.86. Namely, only 17% of lifetime is vulnerable in the benchmark mcf,

while almost 90% of lifetime is vulnerable for lbm. CVF depends on several factors, in-

cluding temporal locality of accesses. For instance, if a block is read several times in

quick succession and not accessed after that, then it will be less vulnerable, than a block

that is read intermittently over the long duration of times. In fact, CVF calculation is

quite complex, and therefore we need a detailed algorithm to estimate it. If several fac-

tors have strong correlations with CVF, then we can exploit this information to estimate

the vulnerability for further purposes, e.g., dynamic protection at run-time.
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The dirty state duration of cache blocks is one of the main factors that affect CVF

over benchmarks. Dirty state duration is defined as the sum of dirty states time over

the execution time in percentage. Thus, dirty state duration of each cache block is the

interval between the first write operation to the eviction. When a cache block is dirty, it

needs to be written back to the lower level memory at its eviction, which can propagate

the errors if they occurred. Thus, the larger portion of dirty state duration in the lifetime

of cache blocks can increase the vulnerability as shown in Figure 3.8. In Figure 3.8,

benchmarks are in an ascending order of CVF, and the dirty state duration follows this

pattern in general. Therefore, cache vulnerability can be reduced if we can minimize

the dirty state duration by protection techniques such as write-through or early write-

back [27] policies. Some benchmarks, however, such as crc, gsm and susan do not follow

this trend. In order to analyze the reason, we classify two CVFs: (i) Read CVF and (ii)

Eviction CVF. Read CVF is defined as CVF when reads make the interval vulnerable

at either clean or dirty state, and Eviction CVF is when an eviction makes the interval

vulnerable at the dirty state.

Note that only reads and evictions at dirty state can make the interval vulnerable

without protections. Figure 3.8 depicts Read CVF and Eviction CVF over benchmarks,

and Eviction CVF takes up most portions of CVFs in benchmarks that follow the trend

of dirty state durations in general. Interestingly, benchmarks crc, gsm, and susan present

relatively larger portions of Read CVF such as 86%, 63%, and 56%, respectively in

CVFs. In crc and susan, the dirty state duration is much smaller than CVF, and it means

that these benchmarks have large portions of Read CVF at the clean state. Indeed, 96%

and 97% of read CVFs occur at clean state in benchmarks crc and susan, respectively.
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Figure 3.9: Dramatic difference of block-level and word-level CVF for each block. If the
vulnerability of a cache block is estimated based block-level modeling, it can be 5,700%
inaccurate as compared to accurate word-level one.

However, Read CVF also takes up many portions of CVF in gsm, but the dirty state

duration is much larger than CVF in that case. On the contrary to other benchmarks,

gsm shows that relatively small portions of dirty state durations are vulnerable (e.g.,

writes at the dirty state often happen to make long time periods non-vulnerable). Indeed,

only 55% of dirty state durations are vulnerable in gsm while more than 90% of dirty

state durations are vulnerable on average for the other benchmarks.

3.2.2 In-depth analysis of inaccurate block-level cache vulnerability esti-
mation

From Figure 3.7, we note that CVF estimation at block-level granularity can be inac-

curate by 37% on average and by up to 121%. However, this is just the tip of the iceberg
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– this is just the inaccuracy in the aggregate vulnerability statistics over all the data cache

blocks. When we consider the vulnerability of a particular block or inaccuracy of vul-

nerabilities over specific time, the inaccuracy is even more dramatic. Figure 3.9 shows

the significant inaccuracy of block-level CVF when CVF of each cache block is evalu-

ated. The light bars show block-level CVF, and the dark bars show word-level CVF for

all of 64 blocks in 4 KB direct-mapped cache with a benchmark, basicmath. A block

(block number 1) shows up to 0.92 difference, and the average difference is about 0.36

which is even higher than the difference of the aggregate CVF (0.28). It is important

since researchers have proposed partial protection techniques [30, 29] to protect selected

blocks, rather than all the blocks in caches, against soft errors due to high overheads.

If they implement block-level estimation to select blocks for partial protections, they

will select wrong blocks causing no improvement of resiliency. Assume that the most

vulnerable three blocks in data cache are entirely protected by ECC or other protection

techniques for the benchmark basicmath in Figure 3.9. Block 18, 29 and 35 are selected

and protected by block-level estimation since they have highest block-level CVF (0.97,

0.98, and 0.98). However, it only reduces the vulnerability by just 1.8% as compared

to the vulnerability without protection since word-level vulnerabilities of block 18, 29,

and 35 are just 0.06, 0.08, and 0.09, respectively. Block 61, 62 and 63 are selected for

protection based on our word-level estimation since their word-level vulnerabilities are

0.83, 0.90, and 0.90. Thus, the vulnerability can be reduced by 18% as compared to no

protection by protecting just three blocks out of 64 blocks.

Figure 3.10 shows the realistic accuracy of our word-level estimation as compared

to block-level estimation. In Figure 3.10(a), we have estimated cache vulnerability
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Figure 3.10: SAD (Sum of Absolute Difference) is the sum of overestimation and under-
estimation of inaccurate block-level estimation as compared to the accurate word-level
estimation. SAD can show the realistic inaccuracy of block-level estimation.
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based on word-level and block-level modeling under a simple scenario where a block

(BLOCK) containing two words (WORD0 & WORD1) is brought at t0 (incoming) and

evicted at t5. The data in WORD0 is read at t1 and t4, it they are written at t2. The

data in WORD1 is written at t3. A single-bit soft error for the entire scenario is assumed

in a write-back cache, and each period (ti, ti+1) is considered as one cycle for brevity’s

sake. And, we also assume that each word contains one-byte data. Read operations at t1

and t4 make periods (t0, t1) and (t2, t4) of WORD0 vulnerable according to the vulner-

ability definition. Note that the read operations of corrupted data can affect the system

behaviors, i.e., vulnerable. The interval (t1, t2) of WORD0 is not vulnerable due to

write operation t2, and (t0, t3) of WORD1 is also not vulnerable due to write operation

t3. Note that the write operations onto the corrupted data can eliminate the impact of

induced soft errors, i.e., non-vulnerable. However, the eviction at dirty state at t5 makes

(t4, t5) of WORD0 and (t3, t5) of WORD1 vulnerable. Note that the corrupted data will

be propagated to lower-level memory at the eviction if it is dirty. Thus, our accurate

word-level modeling estimates six as the vulnerability of this BLOCK where vulnera-

bilities of WORD0 and WORD1 are 4 and 2 bytes × cycles, respectively. On the other

hand, block-level estimation models this word access behaviors, i.e., read operations at

t1 and t4 of WORD0 as block operations, and (t0, t1) and (t3, t4) are all vulnerable.

In the case of write operations at t2 of WORD0 and at t3 of WORD1 make the whole

block non-vulnerable. Eviction at t5 makes this block vulnerable because of the dirty

state. Thus, block-level modeling also estimates the vulnerability as 6 bytes × cycles (=

2 bytes × 3 cycles).

Interestingly, both block-level and word-level modeling results in the same vulner-
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ability (6 byte × cycle) as shown in Figure 3.10(a). However, block-level vulnerability

estimation is still inaccurate due to overestimation and underestimation even though ag-

gravated vulnerability is the exactly same. For the interval (t0, t1), block-level modeling

(2 byte × cycle) overestimates the vulnerability as compared to word-level one (1 byte

× cycle). On the other hand, block-level modeling (0 byte × cycle) underestimates the

vulnerability as compared to word-level one (1 byte × cycle) for (t2, t3). Thus, we can

compute word-level vulnerability by using overestimation and underestimation (vulword

= vulblock - overestimation + underestimation). For instance, word-level vulnera-

bility can be calculated as 6 (= 6 - 1 + 1) in Figure 3.10(a).

Inaccurate block-level estimation can overestimate or underestimate cache vulnera-

bility as shown in Figure 3.10(a), but the entire CVF can just show the relative difference

between overestimation and underestimation. The Sum of Absolute Difference (SAD)

is the sum of incorrectly estimated CVF between block-level and word-level estima-

tion. In Figure 3.10(a), CVF of block-level and word-level modeling is 0.6, so their

relative difference is zero. However, SAD between block-level and word-level vulnera-

bility estimation is 0.2, and it shows the realistic accuracy of block-level modeling. In

Figure 3.10(b), X-axis represents set of benchmarks, and Y-axis represents the sum of

overestimation and underestimation between block-level and word-level modeling. The

upper light one at each bar in Figure 3.10(b) represents the portion that it is vulnerable

at word-level estimation even though block-level estimation considers it non-vulnerable

(underestimation), and the lower dark one is opposite (overestimation). Hence, the upper

one can cause the under-protection, and the bottom one can cause the over-protection if

hardware architects implement the protection technique for caches based on block-level
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estimation. On an average, the SAD (overestimation + underestimation) is about 0.2 and

it can reach up to 0.39 for a benchmark, bitcount. Interestingly, relative difference for

the benchmark cactusADM is just 0.07 as shown in Figure 3.7, but their SAD is 0.20 as

shown in Figure 3.10(b).

3.2.3 Validation with fault injections

In order to validate our vulnerability models and the implementation of the vulner-

ability estimations in gemV-cache, we have performed fault injection experiments on

a cycle-accurate simulation infrastructure. Exhaustive fault injection experiments are

infeasible. For example, to exhaustively validate the failure rate of a 256 byte direct-

mapped cache with 128 bit cache-block, and a benchmark running for 1 million cycles,

we will have to perform 128 × 1 million simulation runs. Since such exhaustive fault

injection campaigns for the entire cache is not feasible, we perform exhaustive valida-

tion on some randomly selected cache blocks on a few benchmarks from Livermore

Loops [40] and Matrix Multiplication. We have implemented in-house Matrix Multi-

plication benchmark for exhaustive fault injection. We have chosen simple benchmark

suites in order to exclude software-level masking effects. We have injected single-bit

faults at a specific block during a specific interval and compared its output to the correct

one that the benchmark returns without faults. It is declared as a failure if they are dif-

ferent or a system crashes. Otherwise, it is a success. Assuming a single-bit fault model,

we have run millions of simulations, and computed Failure RateEquation (3.2):

FailureRate =
Num. of Simulations that failed

Total Num. of simulations
(3.2)

For validation, the failure rate should match CV F as defined in Equation (3.1).
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Table 3.2 compares the failure rate from fault injection and CVF computed from gemV-

cache for the respective programs. We can see that the failure rate and word-level CV F

match perfectly; thus validating our vulnerability models and implementation. For the

block-level vulnerability estimation, it can be up to 300% inaccurate for block number 8

for the benchmark Livermore Loops 12. On average, block-level vulnerability modeling

is 52% inaccurate as compared to failure rate from fault injection campaigns even for

these simple set of benchmarks.

3.2.4 gemV-cache implementation

In order to implement gemV-cache [5], we have developed algorithms that consider

every behavior at the word-level in cache blocks and calculate the vulnerability accord-

ingly. algoECV describes how to calculate vulnerability of cache without protection

(V ulnp) and with block-level parity protection (V ulbp). In this algorithm, curT ick and

recentT ick represent the current tick and the tick of the most recent access to a block,

respectively. History is a data structure which stores the last behavior such as incom-

ing, read, write, and eviction and the most recent tick. In history, we use uncertain

tick information to postpone the decision of its vulnerability are recorded. Accessed is

another data structure containing all the History information of CPU requested words.

According to each operation such as Incoming, Write, Read, and Eviction, algoECV

handles these tick values and associated data structures, and estimates the vulnerability

of caches as shown in Algorithm 1. In the case of Incoming, it clears the dirty bit of

the block (line 05) and saves the current tick to each word’s h for every History in

the block (lines 07). In the case of Write operation, it sets the dirty bit of the block

(line 10) and stores the current tick to h and resets the uncertain (line 13 and 14) if

46



Algorithm 1: algoECV (Estimate Cache Vulnerability)

algoECV returns vulnerabilities of cache without protections (V ulnp) and with block-level parity protection (V ulbp).
Based on our algorithm, we can get vulnerabilities with and without protects by just one simulation.
01: curtick ←current tick;
02: recentT ick ←tick of the most recent access of block;
03: switch Operation do
04: case INCOMING:
05: clear dirty bit of the block
06: for all history h in the block do
07: h.tick ← curT ick
08: end for
09: case WRITE:
10: set dirty bit of the block;
11: for all history h in the block do
12: if h ∈ Accessed then
13: h.tick ← curT ick;
14: h.uncertain← 0;
15: else
16: h.uncertain += curT ick − recentT ick;
17: end if
18: end for
19: case READ:
20: for all history h in the block do
21: if block is dirty then
22: V ulbp += curT ick − recentT ick;
23: if h ∈ Accessed then
24: V ulbp += h.uncertain;
25: h.uncertain← 0;
26: V ulnp += curT ick − h.tick;
27: h.tick ← curT ick;
28: end if
29: else if h ∈ Accessed then
30: V ulnp += curT ick − h.tick;
31: h.tick ← curT ick;
32: end if
33: end for
34: case EVICTION:
35: for all history h in the block do
36: if block is dirty then
37: V ulbp += curT ick − recentT ick + h.uncertain;
38: V ulnp += curT ick − h.tick;
39: end if
40: end for
41: end switch
42: return V ulbp, V ulnp;
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it is accessed. Otherwise, the difference between the current tick and the most recent

tick (the uncertain duration for the other words due to the write operation to the word in

the same block) is added to the uncertain tick (line 16). A write access to word(s) in

the block can affect the other words’ vulnerability estimation and this period from the

last behavior for the other words needs to be kept uncertain since the next behavior is

going to make it vulnerable or not. Indeed, uncertain becomes non-vulnerable if the

next behavior to this word is a write operation (line 14) while it becomes vulnerable

if it is a read operation (line 24) or eviction (line 37) when this block is dirty. It is

why we accumulate these intervals in history and reflect these effects in vulnerability

calculation to deal with uncertain periods according to neighbor word’s behaviors. In

case of Read operation, no protection can merely accumulate the time period from the

last behavior to the vulnerability, V ulnp, and saves the current tick in History (lines 26,

27, 30, and 31).

To the contrary, the block-level parity protection can recover the corrupted data if it

is clean, which means non-vulnerable. However, if it is dirty, the difference between the

current tick and the most recent tick needs to be added to the vulnerability, V ulbp, (line

22) and further uncertain ticks need to be added (line 24) if it is in Accessed. In case of

Eviction, the difference between the current tick and the tick in History is added to the

vulnerability for no protection (line 38) while their difference and uncertain in History

need to be added to the vulnerability for parity protection (line 37), similar to Read

operation. Of course, these ticks are ignored to add up the vulnerability if it is clean. At

last, algoECV returns V ulnp and V ulbp for a block and the sum of all vulnerabilities of

all the blocks in a cache is the vulnerability for a program. Similarly, we have developed
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algorithms to estimate the vulnerabilities for word-level parity protections by modifying

configurations of status bits and cache parameters. For instance, the word-level parity

protection returns the same vulnerability as that of no protection except for the impacts

of read operations at the clean state (line 30) since the word-level parity-bits clears all

the vulnerabilities at reads if the cache is in the clean state.

In gemV-cache, we have implemented vulnerability estimation with various cache

configurations such as protections (ECC or parity) and the granularity (dirty bits and

parity and ECC bits). Further, all of these different protection schemes can be returned at

once, i.e., just one simulation with gemV-cache. Our word-level vulnerability estimation

on gemV-cache is much more complicated than the traditional block-level vulnerability

modeling due to the following reasons. First off, many more state variables are needed

for bookkeeping at the word-level modeling, as opposed to that at the block-level. The

access information per word in a cache block needs to be recorded and is analyzed for

word-level estimation. For instance, block-level modeling considers each word-access

(read and write) as a block-level operation in case of unprotected caches and makes

the whole block vulnerable when read. However, word-level modeling makes each

word vulnerable or non-vulnerable according to their respective word-level accesses,

and thereby estimates cache vulnerability accurately.

Secondly, the behavior of one word affects the perceived vulnerability of the other

words in the same block; which becomes a more critical and complex factor when cache

protection modeling is involved, at the fine-grained granularity. The vulnerability of one

word in a cache-block can depend on the read and write accesses on a neighboring word.

For instance, if one word in the cache block is written, then all the words in the same
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block become dirty (since they share the same dirty-bit on a block). Even if the other

words are not accessed, they become vulnerable. It is because that they will be written

back into the memory, and not discarded during the eviction in a write-back cache.

Lastly, the protection granularity makes it more complicated to estimate cache re-

siliency through word-level vulnerability modeling. If we assume that the parity is en-

coded at every write operation (no decoding), and it is decoded to check whether an

error occurred or not both at every read operation and at eviction. For instance, parity

protection can be implemented at the word-level (a parity-bit per word) or block-level

(a parity-bit per block), and our algorithm needs to log every word’s time. On the other

hand, different granularities of protections always return the same vulnerability statistics

based on block-level vulnerability modeling.
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Table 3.2: Validation of our models and implementation of word-level vulnerability es-
timation. For all the selected words, we can get the perfectly matched vulnerability as
compared to the failure rates through exhaustive fault injection campaigns

Benchmark Matrix Multiplication

Block Number 4 9 10

Number of Simulations 1,084,544 107,136 914,048

Failure Rate 97.54 96.35 94.83

Word-level CVF 97.54 96.35 94.83

Block-level CVF 97.51 95.82 87.06

Inaccuracy 0.03 0.56 8.19

Benchmark Livermore Loop 5

Block Number 1 11 12

Number of Simulations 44,672 53,504 115,968

Failure Rate 99.64 96.76 3.07

Word-level CVF 99.64 96.76 3.07

Block-level CVF 99.43 94.79 9.69

Inaccuracy 0.22 2.04 215.61

Benchmark Livermore Loop 8

Block Number 0 1 3

Number of Simulations 12,895,872 2,977,152 700,672

Failure Rate 46.27 93.84 4.80

Word-level CVF 46.27 93.84 4.80

Block-level CVF 47.72 91.86 8.79

Inaccuracy 3.13 2.10 83.06

Benchmark Livermore Loop 12

Block Number 0 8 15

Number of Simulations 452,096 118,912 53,376

Failure Rate 23.28 0.70 97.54

Word-level CVF 23.28 0.70 97.54

Block-level CVF 24.58 2.80 96.40

Inaccuracy 5.56 300.00 1.17

Benchmark Livermore Loop 18

Block Number 2 3 5

Number of Simulations 19,280,640 1,448,704 1,534,592

Failure Rate 96.20 55.61 52.15

Word-level CVF 96.20 55.61 52.15

Block-level CVF 92.38 92.07 8.66

Inaccuracy 3.97 65.55 83.40
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Chapter 4

Experimental Observations

4.1 gemV for fast and early design space exploration

gemV tool can return vulnerabilities of microarchitectural components for several

benchmarks as depicted in Figure 4.1. Since the metric of vulnerability is bit × cycle,

the vulnerability tends to be increased for time-consuming benchmarks. In order to

compare vulnerabilities in a fair manner, we have estimated architectural vulnerability

factor (AVF) as described in Equation (4.1). AVF is the probability which soft errors

cause system failures. For instance, 10% of soft errors may cause system failures for a

benchmark stringsearch. AVF can vary from 7% (for a benchmark patricia) to 16% (for

a benchmark qsort) depending on benchmarks.

AV F =
V ulnerability (bit × cycles)

Total Size (bit) × Execution T ime (cycles)
(4.1)

The value of gemV is in making possible fast DSE or Design Space Exploration

at the early design stage. Radiation beam testing requires developers to build an en-

tire working prototype before evaluating the resiliency, and even register-transfer level

fault injection requires developers to bring down the design to synthesizable form before
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Figure 4.1: Architectural vulnerability factor among several benchmarks. AVF can vary
from 7% to 16% by changing benchmarks.

resiliency can be quantified. As opposed to these, gemV allows hardware architects,

software engineers, and system designers to evaluate the resiliency at a very early high-

level design stage before implementing a physical prototype. In this manuscript, we

do not consider cache vulnerability since it takes up the vulnerability too much and it

is already explored in Section 4.2. Since cache size much more significant than other

components, its vulnerability is much higher than other components.

4.1.1 gemV for hardware implementation

gemV can quantitatively answer difficult performance-vulnerability trade-off ques-

tions, e.g., how does changing the issue width in a processor affect runtime and vulner-

ability? On the one hand, a broader issue width could reduce the runtime and therefore
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Figure 4.2: Vulnerability and runtime show the same trend by changing issue width, but
vulnerability is more sensitive than runtime.

vulnerability. On the other hand, a larger issue width requires more sequential compo-

nents in the processor, thus increasing the vulnerability. The overall effect on vulnera-

bility is not apparent. With gemV, we can study the effect of such changes and quan-

titatively answer such difficult questions. For the benchmark stringsearch, we observe

that vulnerability decreases when increasing issue width from 1 to 3. The vulnerability

and the runtime are normalized to those of the basic configuration (issue width = 8) in

Figure 4.2. It is interesting that the vulnerability and the runtime show the same trend

according to the decreased size of the issue queue. More interestingly, the issue width

affects the vulnerability more sensitively than the runtime. For example, the vulnerabil-

ity can be increased to 240% with the size of the issue queue equal to 1 as compared to

the basic configuration while the runtime can be increased to 125%.
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Figure 4.3: LSQ size should be considered with both vulnerability and runtime. Vulner-
ability is slightly increasing with the increase of LSQ size, while runtime is decreasing.

We have also run the experiments by varying one component with the others fixed

for the benchmark, stringsearch. Figure 4.3 shows the vulnerability and the runtime

normalized to those of the basic configuration (LSQ size = 64) by varying the size of

LSQ with all other components fixed for the benchmark, stringsearch. When increasing

the size of LSQ from 4 to 256, the runtime is improved as shown in Figure 4.3. On

the other hand, the vulnerability starts decreasing with the increased size of LSQ but

increasing after LSQ size is 16. Thus, gemV is useful to find out an attractive design

space considering both the vulnerability and the runtime. Also, we can observe that the

LSQ size is more sensitive to the performance than the vulnerability since the runtime

ranges from -3% to 170% while the vulnerability ranges from -22% to less than 1%

(opposed to issuing width as shown in Figure 4.2). Thus, the designers should be aware
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of these sensitivities when selecting the size of microarchitectural components.

Extending this example to a larger design space, one interesting question is, that

given an existing processor configuration, and performance leeway, how can we change

some hardware configurations to minimize the vulnerability. It can be answered with

gemV by plotting design points for runtime against the vulnerability. We fix the number

of physical registers in the register file to 256. And, the number of entries in rename map,

history buffer, and IEW queue is also fixed to 114, 86, and 8, respectively. We consider

64, 128, 192, 156, 320, and 384 as the number of entry for ROB, 4, 8, 16, 32, 64, 128,

and 256 as that for LSQ and IQ, and 1 to 8 by incrementing 1 as that for pipeline queues

such as fetch, decode, rename, and I2E ones. In Figure 4.4, the vulnerability and the

runtime for configurations are normalized to those of the basic configuration with 192

entries for ROB, 64 entries for LSQ and IQ, and eight entries for all the pipeline queues.

Among all of these, we can see four different groups of interesting points as in both

positive values of Runtime and Vulnerability, positive values of Runtime and negative

ones of Vulnerability, negative values of Runtime and positive ones of Runtime, both

negative values of Runtime and Vulnerability. A positive value represents the increased

vulnerability (runtime) in the percentage as compared to that of basic configuration while

a negative one the reduced vulnerability. For example, (10, -5) implies 10% increased

runtime (overhead) and 5% reduced vulnerability as compared to the basic configuration

in Figure 4.4.

In this experiment, we randomly have selected the number of entries in ROB, LSQ,

IQ, and pipeline queues in order to plot a design space for a benchmark stringsearch

in MiBench suites [36] as shown in Figure 4.5. A hardware designer can use this de-
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Figure 4.4: Different hardware configurations generates interesting design space in terms
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1% runtime overhead by varying hardware configurations.
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Figure 4.5: Vulnerability and runtime with different hardware configurations (matrix
multiplication). Given hardware configuration, vulnerability can be reduced by up to
37% with less than 1% performance overhead by changing hardware configuration.

sign space to choose the required hardware configuration as dictated by runtime and

vulnerability bounds. Given a specific runtime target, the hardware designer can now

find several design points for vulnerability as shown by the gray band in Figure 4.5. It is

interesting since we can reduce the vulnerability significantly by just changing config-

urations without any protections. The hardware architect is interested in the maximum

vulnerability reduction within defined runtime bounds. We assume the runtime bound

1% as the tolerable overhead and the vulnerability can be reduced by up to 81% even

without severe performance overhead among these design space in Figure 4.4.

We have run the gemV with varying all the possible configurations for a benchmark

matrix multiplication. Thus, our simulation study runs more than 1.2 million to explore
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all possible combinations of these diverse settings. The vulnerability ranges from -9% to

48% where the configuration selection can result in up to 48% vulnerability overhead as

compared to the basic one. In this example, for a runtime overhead of 1%, it is possible

to find a design point with 37% less vulnerability. Given any runtime or vulnerability

overhead, it is now possible to find alternate design points with lower vulnerability or

runtime with gemV. Thus, it is the exciting efficacy of gemV which can be very useful

for designers to explore the expanded design space by considering both the vulnerability

and the performance at the early design stage. Figure 4.5 presents the smaller design

space with the larger number of configurations for the benchmark, matrix multiplication,

than those for the benchmark, stringsearch. Indeed, the vulnerability can be reduced by

82% within the 1% runtime constraint for the benchmark stringsearch. It is mainly

because of the scale of the benchmark, stringsearch, is much larger than that of matrix

multiplication.

Another interesting observation is that each hardware component shows the different

effects on the vulnerability reduction. We analyze these experimental results by chang-

ing one hardware configuration with all the others fixed. The varying numbers of the

entries for ROB does not affect the vulnerability (up to about 14%) while those for LSQ

and IQ can influence the vulnerability by up to 44% and 55%, respectively. Note that

LSQ also affects the performance significantly by up to 85%. In the case of pipeline

queues, they show the similar trends that the vulnerability can be increased by up to

around 50% with the varying size of entries for each pipeline queue while the runtime

can be increased by 20%. This analysis study can guide hardware designers to select the

best configuration with the limited number of total entries, i.e., under the total limited
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Figure 4.6: Vulnerability can be reduced by up to 56% within the same number of se-
quential elements.

size of sequential elements in the system. Indeed, Figure 4.6 shows the maximum vul-

nerability reduction according to the total number of entries in the system. The x-axis

represents the total number of entries (the sum of the number of entries for each com-

ponent), and Y-axis shows the most reduction of the vulnerability in the percentage. For

instance, we can reduce the vulnerability by up to 56% as compared to the configuration

with the maximum vulnerability under the number of entries, 793. And, vulnerability

variation is becoming more abundant with increasing number of the sequential element,

so vulnerability is becoming more critical for complex sequential elements.
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4.1.2 gemV for software development

gemV can also be used by software engineers to find alternate design points with

lower vulnerability or runtime. Alternate design points can be realized with software

changes in either the algorithm, the compiler used or the level of optimization. For

example, given the choice of two sorting algorithms - such as quicksort and insertion

sort - which would be the optimal choice for the best trade-off between runtime and

vulnerability? gemV can be used to study the design space for runtime and vulnerability

due to changes in software. To study such changes, we experiment by establishing a

baseline runtime and vulnerability for an insertion sort algorithm compiled with gcc at

the highest (O3) level of optimization. Figure 4.7 presents the normalized runtime and

vulnerability for various combinations of algorithms, compilers and optimization levels.

We consider an array sorting application with five sorting algorithms (bubble, quick,

insertion, selection, and heap sorting), two compilers (GCC and LLVM [41]), and four

optimization levels (no optimization, O1, O2, and O3). We note that vulnerability can

be reduced by up to 91% without additional runtime overhead with software changes.

A software engineer can use this design space to choose optimal design points to meet

runtime and vulnerability requirements. In this example, switching from a selection sort

algorithm at O1 level of optimization to quicksort at O3 level of optimization reduces

runtime by 53% and vulnerability by 91%.

Table 4.1 summarizes the effects of varying software configurations on the vulnera-

bility and the runtime. In general, the vulnerability is much more sensitive to the soft-

ware configurations than the runtime. The most potent software option is the sorting

algorithm, and the vulnerability can be increased to up to 10 × with the selection sorting
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Table 4.1: Effects of software configuration(algorithm, optimization level, and compiler)
on runtime and vulnerability (sorting)

Max (in %) Min (in %) Reduction

Algorithm
Runtime 113.95 11.23 10×

Vulnerability 1005.44 23.44 43×

Optimization
Runtime 101.19 9.69 10×

Vulnerability 739.46 6.06 123×

Compiler
Runtime 52.33 0.35 173×

Vulnerability 314.08 5.16 62×

compiled by GCC with an O1 option as compared to the quick sorting compiled with the

same compiler and the same option. Note that the maximum difference of the runtime

can be up to about 114% for the sorting algorithm selection. Even the least factor on the

vulnerability is the compiler, but it can still result in up to 314% variation in terms of the

vulnerability while 52% at the most in terms of the runtime. It is also interesting that the

option of the compiler optimization can affect the vulnerability by up to 739% while the

runtime by up to 101%. This vulnerability-aware design space exploration in software

can allow the software designer to meet specific requirements in runtime or vulnerability

or both.

4.1.3 gemV for system design

A system designer can also use gemV to make design choices in several interesting

ways. In this experiment, we will demonstrate two such examples. (i) Given a choice

of processors running different ISAs, which one offers the best trade-off in runtime or

vulnerability? We ran this experiment by changing the ISA within gemV while keeping

all hardware sizes constant. Figure 4.8 shows vulnerability and runtime under different

ISAs such as ARM, SPARC, x86, and ALPHA for the stringsearch benchmark, with no
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Figure 4.8: Variation in runtime and vulnerability for stringsearch under different ISAs.
Bars show vulnerability and diamond points indicate runtime

change in hardware and software configurations. Baseline vulnerability and runtime are

established on the ARM ISA. A benchmark, stringsearch, running on an ALPHA is 38%

less vulnerable than an that on SPARC. The system designer can choose the ARM ISA

for minimum runtime or the ALPHA for minimum vulnerability.

(ii) The system designer can also study the breakdown of vulnerability to individual

hardware components. This can be used to design protection techniques targeting spe-

cific components. Figure 4.8 shows the detailed breakdown of each component such as

HB (history buffer), RM (rename map), LSQ, IQ, IEWQ (IEW queue), I2EQ, RQ (re-

name queue), DQ (decode queue), FQ (fetch queue), RF (register file), and ROB. History

buffer and IQ take up the highest fraction (50%) of the vulnerability in an ARM proces-

sor while the Rename Map and Register File contribute the most in the case of SPARC
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and ALPHA respectively. In this example, a protection mechanism such as ECC can

be applied to the register file on the SPARC processor. However, the same protection

is not very useful on the ARM processor as the RF contributes only 21% to the system

vulnerability.

4.2 Tricky cache protection techniques

Most existing vulnerability estimation toolsets only allow modeling the vulnerabil-

ity of unprotected caches. However, we need a vulnerability estimation toolset when

protections are introduced to cache memory since soft errors are becoming a real threat.

gemV-cache can estimate the vulnerability of caches with parity and ECC protections

as described in Section 3.2.4. One straightforward and power-efficient cache protec-

tion technique, widely implemented in the cache architecture of most existing commod-

ity processors (e.g., ARM [42], Intel [43]), available in the market today, is parity-bit

based protection against single-bit errors. And, another effective method to protect the

cache memory against soft errors is applying ECC to the entire cache memory. In this

manuscript, we model data cache vulnerability of a parity-protected and ECC-protected

cache at the word-level granularity in the gemV-cache toolset. And, we also study the

impact of the design parameters on the protection achieved.

4.2.1 Incomplete parity checking achieves efficient protection

The critical hardware component involved in the design of parity-bit based protection

in the cache is the Parity-Generator/Checker - which generates the 1-bit parity for the

data stored in a cache block, and also updates the parity-bit when any data update occurs

on the respective cache block. The same hardware component will also be used to detect
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Figure 4.9: Vulnerability estimation scenarios with diverse parity checking protocols

errors by comparing the current parity-bit value with the stored parity-bit value in the

stored data. For instance, i) on only read access (P-R), the parity checker is accessed to

verify the parity-bit (PowerQUICC III [44] and ARM1156T2S [45]); ii) on only write

access (P-W), the parity checker is accessed to verify the parity-bit, and iii) on both

read and write access (P-RW), the parity checker is access to check the parity-bit (ARM

Cortex A8 [46] and AM3359 [47]). Note that parity-bit is checked (decoded) before read

or write operations.

Figure 4.9 depicts the vulnerability estimation according to the parity checking con-

figurations. We assume that a block which is composed of two words (WORD0 and

WORD1) in this scenario for Figure 4.9 has one parity-bit. And, parity-bit can be
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checked at read operations (P-R / incomplete read parity checking), at write operation

(P-W / incomplete write parity checking), and at both read and write operations (P-RW

/ complete read and write parity checking). Data is brought at t0 and evicted t5 in this

block. Data stored in WORD0 is read at t1 and written at t2 and t4, and data stored in

WORD1 is written at t3. Without protections, (t0, t1) of WORD0 is vulnerable due to

read operation, and (t4, t5) of WORD0 and (t3, t5) of WORD1 is vulnerable as shown

in Figure 4.9(a).

With complete read and write parity checking, it has zero vulnerability in case of the

clean state as shown in Figure 4.9(d). If errors are detected at clean state, clean data in the

lower-level memory can be brought to the cache to correct errors. However, it is always

vulnerable after first write operation at t2 since soft errors can be detected, but there is

no same data in the lower-level memory in case of the dirty state. In P-RW, parity check

during the first write at t2 can detect and recover an error while it cannot recover after

then (such as at t3, t4, and t5). We can correct soft errors if we have additional recovery

mechanisms such as checkpoint and rollback [48]. However, we do not consider the

additional protection techniques except parity and ECC in this manuscript. On the other

hand, with incomplete read parity checking, it has the least vulnerability among these

checking configurations as shown in Figure 4.9(b). The periods (t2, t4) of WORD0 and

(t2, t3) of WORD1 are not vulnerable since errors in these periods can be overwritten

due to the write operations at t3 and t4. Note that parity bit is decoded before read (P-

R) and before read and write (P-RW) operations. Interestingly, P-W is more vulnerable

than unprotected cache even with the additional redundancy as shown in Figure 4.9(c).

In P-W, read at the clean state makes vulnerable periods since it does not check the parity
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Figure 4.10: Incomplete read parity checking (checking only at reads) achieves the high-
est resiliency among various parity checking protocols. Complete parity checking is
more vulnerable than incomplete read parity checking even with the additional redun-
dancy

bit.

Figure 4.10 clearly shows the efficacy of parity protections with incomplete read

parity checking with benchmarks. In Figure 4.10, X-axis represents benchmarks, and Y-

axis represents the normalized vulnerability of each parity checking configuration to that

of no protection. Complete parity checking reduces the vulnerability by only 5%, while

incomplete read parity checking reduces it by 15% on average. However, the vulnerabil-

ity is worsened by 56% with incomplete write parity checking as shown in Figure 4.9(b).

It is interesting that incomplete read parity checking is the most effective way to reduce

the vulnerability among parity checking protocols despite the lesser checking overhead

in terms of hardware and power consumption as shown in Figure 4.11. The effectiveness

68



of parity techniques with incomplete read parity checking depends on the characteristics

of benchmarks such as cache access patterns. For instance, parity protection with incom-

plete read parity checking for crc can decrease the vulnerability by 82% as compared to

that of no protection. We have observed that the efficacy of parity protection is affected

by some vulnerable periods at the clean state. Note that parity protections cannot bring

data from the lower-level memory at the dirty state. In our experiments, more than 80%

of vulnerable periods occur at the clean state in the benchmark crc in the case of no

protection as stated in Section 3.2.2 and these intervals can be effectively corrected by

parity protections. For the same reason (a high portion of the clean state), parity is also

effective for the benchmark, susan. On the other hand, vulnerable periods at the clean

state are only 7% in the benchmark gsm and thus it is less effective and even up to 71%

worse as shown in Figure 4.10.

Figure 4.11 plots the relative power overheads incurred by the parity-checking con-

figurations for 4 KB cache architecture across benchmarks. Y-axis in Figure 4.11 rep-

resents the normalized energy consumption to that of unprotected cache. To estimate

power consumption, we compute the read/write power of this parity-checking protocol

implementation in the cache by manipulating CACTI 5.0 [49] for 45 nm technology

node. We have designed the unit for this cache, synthesized it in 45 nm technology,

and obtained power numbers using PowerMill [50] in order to estimate the power of

the parity generation/checking hardware logic. We can observe that when checking the

parity value on both reads and writes (P-RW). Thus P-RW incurs a power overhead of

around 103% for only 5% cache protection. On the other hand, an implementation of

parity-checking on only reads (P-R), incurs a power overhead of only 71% for around
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Figure 4.11: In the design of a parity-protected cache, the power overheads caused by
parity checking at reads are 30% lower than that when parity is checked on both reads
and writes.

15% improved cache protection; achieving power-efficient cache protection. It should

be noted that parity is implemented at the block-level granularity. The power overhead

comes from P-W is the least (39%) among parity checking protocols, but it increases the

vulnerability by 56% on average as compared to no protection.

In short, parity-checking, when performed over read accesses alone, provides the

better level of parity protection (avg. 15% and max. 82%) to the cache at 30% lower

power overheads compared with parity-checking when performed over both read and

write accesses. We have run several simulations varying in cache size and cache asso-

ciativity and observe that the power-efficient protection achieved through the P-R parity-

checking protocol, is consistent across cache configurations.

70



W
O

RD
1

W
O

RD
0

I E

Word.Vul = 3

Word.Vul = 4 To
ta

l B
lo

ck
.V

ul
= 

7

t1 t2t0 t3 t4

WR

N
o 

Pr
ot

ec
tio

n

R
t1 t2t0 t3 t4

I=Incoming E=EvictionR=Read W=Write

(a) Vulnerability estimation scenarios without
protections (CVF = 0.875)

W
O

RD
1

W
O

RD
0

I E

Word.Vul = 2

Word.Vul = 3 To
ta

l B
lo

ck
.V

ul
= 

5

t1 t2t0 t3 t4

WR

PB
DB

/P
BD

W

R
t1 t2t0 t3 t4

(b) Vulnerability estimation scenarios with
block-level parity protection (CVF = 0625)

W
O

RD
1

W
O

RD
0

I

Word.Vul = 2

Word.Vul = 4 To
ta

l B
lo

ck
.V

ul
= 

6

t1 t2t0 t3 t4

WR

PW
DB

R
t1 t2t0 t3 t4

(c) Vulnerability estimation scenarios with
block-level parity protection and word-level
dirty bit (CVF = 0.75)

W
O

RD
1

W
O

RD
0

I

Word.Vul = 2

Word.Vul = 0 To
ta

l B
lo

ck
.V

ul
= 

2

t1 t2t0 t3 t4

WR

PW
DW

R
t1 t2t0 t3 t4

E

(d) Vulnerability estimation scenarios with
word-level parity protection and word-level
dirty bit (CVF = 0.25)

Figure 4.12: Vulnerability estimation examples with diverse status-bit configurations.
Note that the granularity of dirty bit does not affect the vulnerability if a parity bit is
implemented on block-level

4.2.2 Fine-grained status-bits maximize the achieved parity protection

Another key design parameter involved in the design of a parity-protected cache,

is the configuration of the status bits (parity-bit and dirty-bit), which adds to the hard-

ware overhead. In addition, the vulnerability definition of the parity-protected cache

is dependent on the status bit configurations. In a parity-protected cache, a parity-bit

can be implemented at the block-level (Itanium 2 [51]) and word-level (PowerQUICC

III [44], Cortex R4 [52], and CPPC [28]), and dirty-bit can be also implemented for

block-level (Cortex R4 [52]) and word-level (CPPC [28]). Figure 4.12 demonstrates the

vulnerability definition of a cache block composed of 2 words (WORD0 and WORD1).
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In Figure 4.12, data is brought in the cache at t0 and evicted at t4. Data in WORD0

is read at t1 and written at t2, and WORD1 data is read at t3. In case of unprotected

cache, (t0, t1) of WORD0 and (t0, t3) of WORD1 is vulnerable due to read operations,

and (t2, t4) of WORD0 and (t3, t4) of WORD1 is also vulnerable because of eviction at

dirty state as shown in Figure 4.12(a).

We have implemented with the P-R (parity-check on reads only) protocol, for the

following status bit settings:

PBDB (Parity per Block and Dirty per Block): Coarse-grained status bits – Since the

entire cache block is configured with one parity-bit, a read access on any one word

(in non-dirty blocks) can trigger the recovery of the entire cache block; since the

single parity-bit cannot identify the exact word that is erroneous as shown in Fig-

ure 4.12(b). Also, since the entire cache block is configured with one dirty-bit,

a write access on any one word makes the entire cache block dirty; thereby ren-

dering every word of the block unrecoverable (vulnerable), on read accesses after

that as described in algoECV.

PBDW (Parity per Block and Dirty per Word): Medium-grained status bits – In this

configuration, though each word in the block is configured with its respective

dirty-bit, the vulnerability definition does not differ from that of the PBDB con-

figuration as shown in Figure 4.12(b). If any one word of a cache block is dirty

(based on its respective dirty-bit), the entire cache block will have to be considered

dirty; because the single parity-bit cannot know which word in a cache block has

corrupted values.

PWDB (Parity per Word and Dirty per Block): Medium-grained status bits – If a parity-
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bit is associated with every word in the cache-block, parity-checks on read ac-

cesses can identify single-bit errors, and also trigger the targeted recovery of the

erroneous word in case of the clean state. Owing to this targeted recovery mecha-

nism, the vulnerability of the nearby words during read accesses are not affected.

For instance, we see that the vulnerability of WORD0 and WORD1 are defined by

the read/write accesses on the respective words only as shown in Figure 4.12(c).

Since the entire cache block is configured with one dirty-bit, a write on any one

word renders the whole cache block dirty, and therefore an updated word in the

cache block cannot be identified. It affects the recovery mechanism and therefore

renders the entire cache block vulnerable.

PWDW (Parity per Word and Dirty per Word): Fine-grained status bits – If every

word in the cache block is associated with its respective dirty-bit and parity-bit,

the fine-grained status bit configuration helps achieve increased parity-based pro-

tection. Since each word has its respective parity-bit, targeted recovery is possible

during read accesses in case of the clean state. Also, since each word has its re-

spective dirty-bit, the updated words can be identified accurately; thus assisting

in the targeted recovery mechanism. In Figure 4.12(d), we see that WORD1 is

non-vulnerable from incoming to eviction, because the WORD1 has never been

updated by the program, and only the words that have been updated are vulnerable.

Figure 4.13 shows the effectiveness of parity protections by varying the granularity

and configuration of the status-bits (such as parity-bit and dirty-bit) which can induce

hardware overhead in a parity-protected cache implementation. In Figure 4.13, X-axis

represents benchmarks, and Y-axis represents normalized vulnerability of each status-
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Figure 4.13: Fine-grained parity with block-level dirty-bit reduces the vulnerability by
only 2% as compared to block-level parity and dirty-bits. Fine-grained dirty-bit along
with parity-bit per word is the best in terms of vulnerability (60% reduction).

bits granularity and configuration by the vulnerability without protections. The coarse-

grained PBDB configuration reduces the vulnerability 15% on average. Interestingly,

medium-grained PBDW configuration (as in ARM Cortex R4 [52]) reduces only 17%

on average even though it needs parity bit per every word in cache blocks. The fine-

grained PWDW reduces the vulnerability 60%, and it achieves the maximum level of

protection.

In short, it is interesting that the granularity of parity-bits does not affect the vulner-

ability much without fine-grained dirty-bits. It is mainly because that it cannot locate

which word is dirty or clean. Hence, hardware architects have to change the granularity

of both parity-bits and dirty-bits in order to reduce the vulnerability efficiently.
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(b) Vulnerability estimation scenarios with in-
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(d) Vulnerability estimation scenarios with
complete read and write ECC checking (CVF
= 0)

Figure 4.14: Vulnerability estimation examples with diverse status-bit configurations.
Note that checking ECC-bits at read operations is more vulnerable than that at both read
and write operations.

4.2.3 ECC protection can be vulnerable for single-bit flips

We need to consider two kinds of critical hardware components of ECC based pro-

tection in the cache; ECC checking protocol and the granularity of status bits, especially

ECC-bits. In ECC protections, dirty bit does not affect the protection efficacy since it

can correct soft errors regardless of dirty status. First off, Figure 4.14 depicts the vul-

nerability estimation according to the ECC checking configurations. In Figure 4.14, we

assume there are ECC-bits implemented per a single block, i.e., block-level ECC pro-

tection. In Figure 4.14, a block is composed of two words (WORD0 and WORD1), and

cache data is brought at t0 and evicted at t4. And, cache behavior is the exactly same
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with Figure 4.12

ECC checking at both read and write operations (complete read and write ECC

checking or E-RW) provides the complete resiliency, which means zero vulnerability. In

the case of ECC-protection, it can correct soft errors regardless of dirty status if detected.

Since ECC-bits are checked at every behavior in E-RW, it can detect and correct all the

single-bit soft errors as shown in Figure 4.14(d). In incomplete write ECC-checking or

E-W, read operations always make vulnerable periods as shown in Figure 4.14(c) since

it does not check ECC-bits at read operations.

Interestingly, ECC checking at reads (incomplete read ECC checking or E-R) is still

vulnerable even for single-bit flips as shown in Figure 4.14(b), while incomplete read

checking provides the better vulnerability than complete read and write checking in case

of parity protection. ECC checking at read operations can be vulnerable due to the

behaviors of other words in the same block. As depicted in Figure 4.14(b), the period

(t1, t2) of WORD1 is vulnerable since a write operation of WORD0 at t2 generates new

check bits for the whole block. And, the erroneous data could be included if an error

occurred (t1, t2) at WORD1. And, this erroneous data can be propagated to CPU due to

the read operation at t3. It is interesting that incomplete ECC protection such as E-R and

E-W cannot guarantee the perfect fault coverage (zero vulnerability) even for single-bit

bit flips according to the ECC checking protocols.

Figure 4.15 shows CVF with complete and incomplete read ECC protections as com-

pared to CVF of no protection. ECC protection may provide the perfect error recovery

against soft errors regardless of the cache state. However, it is interesting that incom-

plete block-level ECC protections do not entirely remove the vulnerability. On average,
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Figure 4.15: Incomplete read ECC checking does not remove the vulnerability com-
pletely, while complete ECC checking provides zero vulnerability.

incomplete read ECC and incomplete write ECC reduce the vulnerability by 90% and

25%, respectively, over benchmarks. In the case of ECC protections, the frequency of

write accesses affects the effectiveness of vulnerability reductions. For instance, only

1% of total accesses in susan are the write operation and its vulnerability can be effi-

ciently reduced to almost zero by the block-level ECC protection with the incomplete

read checking protocol.

Another key design parameter to the design of ECC-protected cache is the configu-

ration of status bits, especially ECC-bits. Figure 4.16 shows the vulnerability estimation

with varying the granularity of ECC-bits under a sample scenario. Note that ECC-bits are

checked at only read operations since ECC-checking at both read and write operations

makes vulnerability zero. In Figure 4.16, a block is composed four words (WORD0,
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Figure 4.16: Vulnerability estimation examples with diverse status-bit configurations on
ECC protection. Note that ECC-bits are checked at just read operations.
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WORD1, WORD2, and WORD3) in order to separate ECC-bits per half-block and ECC-

bits per word. Cache data is brought into this block at t0 and evicted at t5. Data stored

in WORD0 and WORD2 is written at t1 and t3, respectively. Data in WORD1 and

WORD3 is read at t2 and t4, respectively. Without protections, (t1, t5) of WORD0,

(t0, t5) of WORD1, (t2, t5) of WORD2, and (t0, t5) WORD3 are vulnerable as shown

in Figure 4.16(a).

With block-level ECC protection or EB, write operation of other words in the same

block can make vulnerable periods as shown in Figure 4.16(b). For instance, (t1, t2) of

WORD0 and (t0, t2) of WORD1 are vulnerable due to the write operation of WORD2 at

t2. However, (t1, t2) of WORD0 and WORD1 are not vulnerable with half block-level

ECC protection or EHB as shown in Figure 4.16(c). In EHB, WORD0 and WORD1 are

protected by ECC protection, and their vulnerability estimation is not affected by other

words such as WORD2 and WORD3. However, (t0, t1) of WORD1 is still vulnerable

even with half block-level ECC protections due to write operation of WORD0 at t1. In

the case of word-level ECC protection or EW, there are no vulnerable periods as shown

in Figure 4.16(d).

Figure 4.17 shows CVF according to the granularity of ECC-bits with the incom-

plete read ECC checking protocols. As we described before, 10% of the lifetime is still

vulnerable by the block-level ECC protection when we check ECC-bits only at reads.

CVF can be decreased by 38% by two sets of ECC-bits per block as compared to ECC

per a block. We have used 64 bytes as a single block, so we apply ECC-bits per 32

bytes as EHB (ECC-bits half block) implementation for our environments. ECC protec-

tion with ECC-bits per word can eliminate the entire vulnerable periods, but it requires
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Figure 4.17: CVF with ECC protections are affected by the granularity of ECC-bits.

ECC-bits per each word. Thus, there are two methodologies in order to protect cache

memory perfectly by ECC protection; complete read and write ECC checking and fine-

grained ECC-bits. The former checks ECC-bits more frequently than the later due to the

additional checking at write operations. And, the later can incur more considerable area

overhead than the former since the latter requires ECC-bits per each word, not a block.

The interAptiv [53] processor has ECC-bits per, and it checks ECC-bits at both read and

write operations. However, we do not have to check ECC-bits at both reads and writes

if there are ECC-bits per word for the single-bit flips.

In short, we need to be careful in the implementation of parity and ECC protections

on caches. We can think that parity should be checked for write and read operations

to improve the resiliency of cache memories. It is, however, interesting that parity im-

plementations of additional checks at writes (decoded and encoded as well) can even
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increase the vulnerability. Over benchmarks, fine-grained protections (parity-bit and

dirty-bit at a word-level granularity) with checks at read operations (incomplete read

parity protection) can decrease the vulnerability by about 15% while those with checks

at both read and write operations (complete parity protection) can only reduce the vul-

nerability by about 5%. It is also interesting that block-level ECC checks at both read

and write operations (complete ECC protection) can make the vulnerability zero, while

ECC checks at read operations only (incomplete read ECC protection) do not bring the

vulnerability down to zero.
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Chapter 5

Conclusion

Soft errors are becoming a real threat to modern embedded systems. Caches are

the most susceptible to soft errors and several protection techniques based on parity and

ECC have been presented. However, no existing scheme can accurately estimate how

effective these protection techniques in terms of vulnerability. To this end, we propose a

protection-aware vulnerability estimation by gemV-cache at the fine-grained word-level

modeling. Our experiments with gemV-cache find out several interesting results: (i)

block-level modeling and estimation is inaccurate as compared to word-level one, (ii)

parity protection is not a good option in case of the early dirtiness, (iii) parity checking

at only read operations is the more efficient in terms of vulnerability and power con-

sumption than that at both read and write operations, (iv) the granularity of either only

parity-bit or dirty-bit does not affect the vulnerability mainly, (v) introduction of both

parity-bit and dirty-bit per word can significantly improve the efficacy of parity protec-

tions, and (vi) ECC protection can be vulnerable if block-level ECC bits are checked

only at read operations, not at both read and writes.

Several protection techniques against soft errors have been presented ever since re-

siliency became an important design concern in modern embedded systems. The ne-
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cessity to quantitatively study the effectiveness of such protection techniques have led

to resiliency quantification schemes such as exhaustive fault injection campaigns and

neutron-induced beam testing. Since they are expensive and difficult to perform, sev-

eral vulnerability estimation tools have been proposed. However, previous vulnerability

estimation tools are incomprehensive, inaccurate, and inflexible. In this manuscript,

we presented gemV, a comprehensive and accurate vulnerability estimation based on

the cycle-accurate simulator gem5. We also showed that our tool had been validated

against fault injection experiments into all the microarchitectural components. In order

to demonstrate the value in gemV as a design space exploration tool, we performed sev-

eral experiments useful to hardware and software engineers. For the hardware designer,

we showed the effects of microarchitectural changes on runtime and vulnerability. For

the software designer, we showed the effects of the algorithm, compiler and optimization

level on runtime and vulnerability. We also demonstrated the usefulness of gemV to a

system designer in designing component specific or ISA-dependent soft error protection

techniques.

In the future, gemV will also model and characterize the effects of software level

masking effects such as dynamically dead instructions, uninfluential program flow changes,

etc. It will improve the accuracy of gemV-tool. Further, we will also validate the accu-

racy of gemV tool through neutron-induced beam testing. We have validated our vulner-

ability modeling by statistical fault injection, and we assume that soft error rate of each

microarchitectural component is proportional to its size. However, we cannot ensure

whether the assumption that we have made is valid or not. Assume that the size of mi-

croarchitectural component A and B is 100 and 200. Based on our assumption, the soft
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error rate of B is double as compared to that of A. However; it is possible neutron can-

not reach to microarchitectural component B through real neutron beam testing. Thus,

we need to perform neutron-induced beam testing in order to validate the modeling of

gemV-tool.
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국문초록

내장형시스템을위한신뢰성측정방법

고요한

컴퓨터과학과

연세대학교일반대학원

내장형시스템을설계함에있어서시스템디자이너는성능,전력,심지어신

뢰성에이르기까지여러가지요소를두루고려해야만한다. 내장형시스템의경

우는작은폼팩터로인해서배터리성능에분명한제약이있고,이로인해고성

능만큼이나혹은그이상으로저전력이중요성역시날로강조되고있다. 현재는

많은시스템에서저전력컴퓨팅을위해서기존의컴퓨팅환경보다훨씬공격적

인동적전압스케일링을사용하고있는데,이는소프트에러에대한취약성을높

일수있다. 소프트에러란한번에러가발생하면하드웨어자체의손상으로인

해서복구되지않는영구적하드에러와는달리에러가발생하더라도일시적으

로만바뀌는에러를의미한다. 이러한소프트에러는저전력이슈뿐만아니라최

근의하드웨어소형화와경량화에따라점점더심각한문제로부각되고있다. 또

한,이는단순히위협요소정도에그치지않고, SUN사의서버피해와같은실질

적인경제적피해를일으키고있는추세이다. 이에따라최신의임베디드시스템

을판매하는회사는소프트에러의피해를최소화하기위하여다양한보호방안

이다양한형태에서연구하고있다.

그러나소프트에러로부터시스템을보호하기위해서하드웨어전체실행시

간동안시스템전체를보호하는방법은시스템의성능,면적,전력등에큰과부

하를일으킨다. 예를들어,해밍코드처럼하드웨어를수정하여캐시와같은메
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모리시스템을보호하는경우엔신뢰성을높일수있는반면,면적,전력,성능등

에서지나친오버헤드를발생시킨다. 또한,하나의태스크를수행하면서프로세

서의모든부분이소프트에러에취약하지는않은만큼실행시간내내전체시스

템을보호하는방법은효율성에서도많은의구심을사고있다. 이로인해서현재

는선택적보호방법이제시되고있다. 그러나이러한선택적보호방법이효율적

인지어떻게증명할수있을까?보호방법을적용할때실행시간이나전력소비

에대한오버헤드는비교적계산이나추정이쉽게가능하다. 그러나소프트에러

에대한신뢰성을수치적으로측정하는것은쉽지않다.

본고에서는디자인공간을답사하기위해서시스템시뮬레이터 gem5를이용

하여프로세서컴포넌트의신뢰성을측정하는 gemV-tool프레임워크를제안한

다. 시스템시뮬레이터기반신뢰성측정프레임워크를통해서아래와같은질문

에답할수있다. 먼저,하드웨어제작자가하드웨어설정을통해서신뢰성을향

상시킬수있는가? 소프트웨어엔지니어는소프트웨어개발을통해서하드웨어

의신뢰성을향상시킬수있는가? 시스템디자이너는 ISA를바꿀수있는데,이

전 ISA에서동작하던신뢰성향상방안이변경된 ISA에서동작할것이라고판단

할수있을까?또한,최근내장형시스템은이미보호방법이적용되어있는경우

가많은데,이를위한보호방법을적용할시의신뢰성측정모듈역시제공하고

있다.

또한,본프레임워크는다양한보호방법을고려한신뢰성측정이가능하므로

보호방법지침을제공할수있다. 본고에서는캐시메모리의중요성을고려하여

캐시메모리의패리티보호방안에대하여탐색하였다. 먼저,읽기연산에대하

여만체킹을하는경우 (즉,쓰기연산에대해서는하지않는경우)오히려읽기와

쓰기두연산모두에대해서체킹을하는경우보다적은체킹을했음에도높은신

뢰성을보였다. 더불어,상태비트(패리티,더티)의입도에대해서도검증을실시

하였는데이역시흥미로운결과를보였다. 예를들어,높은신뢰성을위해패리

티비트를워드레벨로적용할경우엔더티비트역시워드레벨로적용해야만한

다. 그렇지않은경우엔 (즉,더티비트는여전이블록레벨일경우)하드웨어오

버헤드가증가했음에도신뢰성증가폭이거의없었다.

핵심단어: 소프트에러,신뢰성,취약성
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