
Dependable Computing Lab.
Dept. of Computer Science

Yonsei University

Thesis Defense
Comprehensive Resiliency Evaluation for
Dependable Embedded Systems

Yohan Ko

Committee
Prof. Kyoungwoo Lee
Prof. Bernd Burgstaller
Prof. Yo-Sub Han
Prof. Hyunok Oh

/ 24

Outline

2

 Thesis reminder
 Comments from the previous presentation
 Response to comments
 Conclusion

/ 24

Outline

3

 Thesis reminder
– How to quantify the resiliency of a processor
– How to quantify the effectiveness of protection techniques

 Comments from the previous presentation
 Response to comments
 Conclusion

/ 24

Soft errors?

4

 Charge carrying particles
induce soft errors
– Alpha particles
– Neutrons
– Cosmic ray +- +

+
+---

Transistor

source drain

10

 Soft error rate
– More than 1 bits in a chip
– Exponentially increases

with technology scaling
and near-threshold
computing

[ASPLOS 2010]
[ASPLOS 2010] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. Shoestring: probabilistic soft error reliability on the
cheap. International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). 2010.

/ 24

How to quantify the resiliency of a processor

5

 Hardware configuration
– Issue width, ROB size, IQ size,

LSQ size
 Software configuration

– Compiler (gcc, LLVM)
– Optimization options
– Algorithm

 System configuration
– ISAs (ARM, X86, POWER, SPARC)
– Number of coresLifetime

Write Read
Vulnerable

Vulnerability modelingSimulator
gemV-tool (Our framework)

Hardware
- LSQ
- IQ/ROB
- Pipeline queue

Software
- Algorithm
- Compiler
- Optimization

System
- ISA
- # of cores
- Protections

Input (Configurations)

Output (Stats)
Performance

- Runtime (݈ܿ݁ܿݕ)
Resiliency

- Vulnerability (ܾ݅ݐ ൈ ݈݁ܿݕܿ)

[ASAP 2016] Karthik Tanikella, Yohan Ko, Reiley Jeyapaul, Kyoungwoo Lee, and Aviral Shrivastava. gemV: A validated toolset for the early exploration of system
reliability. IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP). 2016.

[ASAP 2016]

Good for design space exploration in terms of
performance and resiliency at the early design phase

/ 24

How to quantify the effectiveness of protection techniques

6

 Design guidelines for resilient and efficient parity protected write-
back L1 caches

 To do this, we have extended gemV-tool to gemV-cache

 Design questions:
– When to check for parity

• At Reads
• At Writes
• At both Reads and Writes

– Granularity of status bits
• Block level
• Word level

Checking
protocol

Granularity of
status bits

Vulnerability
modeling algorithm

w/ considering
protections

Configurations gemV-tool

Lifetime
Vulnerable

Output
Vulnerability

w/o protections

Vulnerability
w/ protections

gemV-cache

[DAC 2015] Yohan Ko, Reiley Jeyapaul, Youngbin Kim, Kyoungwoo Lee, and Aviral Shrivastava. Guidelines to design parity protected
write-back L1 data cache. Design Automation Conference (DAC). 2015.

[DAC 2015]

/ 24

When should parity be checked?

77

0

1

2

3

N
or

m
al

iz
ed

 V
ul

ne
ra

bi
lit

y
to

 N
o

Pr
ot

ec
tio

n

Benchmarks

Vulnerability of Parity-protected Cache: Checking Protocol
P-W (Incomplete Write Parity Checking)
P-RW (Complete Read & Write Parity Checking)
P-R (Incomplete Read Parity Checking)

0.95

1.56

0.85

P-R improves resiliency by 15%

[DAC 2015] Yohan Ko, Reiley Jeyapaul, Youngbin Kim, Kyoungwoo Lee, and Aviral Shrivastava. Guidelines to design parity protected
write-back L1 data cache. Design Automation Conference (DAC). 2015.

More checking is always better?
NO. P-R provides better resiliency than P-RW

[DAC 2015]

/ 24

At what granularity must we implement status bits?

8

0

1

N
or

m
al

iz
ed

 V
ul

ne
ra

bi
lit

y
to

 N
o

Pr
ot

ec
tio

n

Benchmarks

Vulnerability of Parity-protected Cache: Status Bits
PBDB (Parity per Block and Dirty per Block)
PWDB (Parity per Word and Dirty per Block)
PWDW (Parity per Word and Dirty per Word)

0.85
0.83

0.40Fine-grained status bits improve resiliency by 60%

[DAC 2015]

[DAC 2015] Yohan Ko, Reiley Jeyapaul, Youngbin Kim, Kyoungwoo Lee, and Aviral Shrivastava. Guidelines to design parity protected
write-back L1 data cache. Design Automation Conference (DAC). 2015.

Finer granularity is always better?
YES. But, there is no medium granularity for protection

/ 24

Outline

9

 Thesis reminder
 Comments from the previous presentation

– Error modeling
– Strength of gemV-tool
– Use of gemV-tool

 Response to comments
 Conclusion

/ 24

1st comment: Need of concrete error modeling

10

Embedded processor

Design parameters

Performance Power

Area Resiliency

Lifetime
Vulnerable

Vulnerability
modeling

Simulator

gemV-tool (Our framework)

Hardware
- LSQ
- IQ/ROB
- Pipeline queue

Software
- Algorithm
- Compiler
- Optimization

System
- ISA
- # of cores
- Protections

Input (Configurations)

Output (Stats)
Performance
- Runtime (݈ܿ݁ܿݕ)

Resiliency
- Vulnerability (ܾ݅ݐ ൈ (݈݁ܿݕܿ

Definition
- Cause of unreliability
- Error trend
- Vulnerability modeling

Strength of gemV
- Why modeling at the
architectural level?
- Why is gemV better than
other vulnerability
modeling framework?
- Outcome from gemV

Resiliency

/ 24

2nd comment: What can gemV-tool do?

11

Embedded processor

Protection technique

Trade-off relationship

Resiliency Overhead

Parity protection guideline for L1 data cache

Checking protocol:
Checking at Read > Checking at Read & Write
Granularity of status bits (dirty and parity):

Coarse ≈ Medium < Fine

Choice of cache protection

Parity protection:
Comparable overhead,

but not perfect reliability

ECC protection:
Huge overhead,

but perfect reliability

/ 24

Outline

12

 Thesis reminder
 Comments from the previous presentation
 Response to comments

– Our soft error model
– Strength of our gemV-tool
– Use of gemV-tool to choose protection techniques

 Conclusion

/ 24

Let’s think about it

Wind Cold temperature Human body Catching a cold

13

Microdust Dirtiness Nutritional imbalance Cure-all medicine

/ 24

How about computers?

External charges Soft error Computer system System failure

14

Hard error Hacking Software bug Cure-all protection

/ 24

Our soft error model

15

1. Occurrence of soft errors are proportional to chip size of
microarchitectural components

2. External charge usually induces single-bit soft errors, not
multiple-bit soft errors

1

5

Component A

Component B

Number of soft errors
= Soft error rate ൈ area ൈ execution time

= હ	 ൈ ૚	 ൈ ࢼ	

Number of soft errors
= Soft error rate ൈ area ൈ execution time

= હ	 ൈ ૞	 ൈ ࢼ	

Component B Component B

Soft error rate = હ Soft error rate = ૚ ૚૙૙⁄ ൈ હ
[TACO 2013] Jongwon Lee, Yohan Ko, Kyoungwoo Lee, Jonghee M. Youn, and Yunheung Paek. Dynamic code duplication with vulnerability awareness for soft error detection on
VLIW architectures. ACM Transactions on Architecture and Code Optimization (TACO). 9, 4, Article 48. January 2013.

[TACO 2013]

[TECS 2016] Yohan Ko, Jihoon Kang, Jongwon Lee, Yongjoo Kim, Joonhyun Kim, Hwisoo So, Kyoungwoo Lee, and Yunheung Paek.
Software-Based selective validation techniques for robust CGRAs against soft errors. ACM Transactions on Embedded Computing
Systems (TECS). 15, 1, Article 20. January 2016

[TECS 2016]

/ 24

What is vulnerability?

16

 Temporal domain
– Execution time

 Spatial domain
– Hardware bits

 Design space
– 10 ൈ 10 = 100 bit ൈ cycles

 Vulnerability
– 5 + 5 = 10 bit ൈ cycles

Time

Sp
ac

e

Execution time = 10 cycles

H
ar

dw
ar

e
sp

ac
e

=
 1

0
bi

ts
If there is a single-bit flip,

it may induce system failures

[MICRO 2003] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd Austin. A systematic
methodology to compute the architectural vulnerability factors for a high-performance microprocessor. International Symposium on
Microarchitecture (MICRO). 2003.

[MICRO 2003]

/ 24

Vulnerability modeling at the architectural level

17

Software

Vulnerability
= 1 instruction

W

R

R

R

Vulnerability
= 2 instructions

ADD r1, r2, r3
SUB r5, r1, r4
STORE r2, r6

1:

3:
2:

Vulnerability
= 4000 cycles

W

R

Vulnerability
= 1000 cyclesArchitecture

R

R

3

1 3

1 2

r2
r1

2

Instructions

1000 2000 3000 4000 5000

r2
r1

1000 2000 3000 4000 5000

Cycles

[WRFET 2008] Vilas Sridharan and David R. Kaeli. Quantifying software vulnerability. Workshop on Radiation Effects and Fault
Tolerance in Nanometer Technologies (WRFET). 2003.

[WRFET 2008]

/ 24

What makes our gemV-tool better?

18

Embedded processorConfigurations Vulnerability

Comprehensive

TLB

Cache

Register
file

Reorder
buffer

Pipeline
register Memory

Versatile

Hardware

Software

System

Accurate

Vulnerability
modeling

Fault
injection

/ 24

Outcome from gemV

19

 What is the probability that a single-bit soft error in a computer
system results in system failure?
– Architectural vulnerability factor

– ܨܸܣ ൌ ∑ ௏௨௟௡௘௥௔௕௜௟௜௧௬	௢௙	௔௟௟	௧௛௘	௦௬௦௧௘௠	௖௢௠௣௢௡௘௡௧௦
ௌ௬௦௧௘௠	௛௔௥ௗ௪௔௥௘	௕௜௧௦ൈா௫௘௖௨௧௜௢௡	௧௜௠௘

ൌ
5 ൅ 5
10 ൈ 10 ൌ 10ሺ%ሻ

