/

Critical Variable Identifications using Register
Vulnerability for Selective Protections

October 19th, 2018
Dukui Song

DEPENDABLE COMPUTING LAB.
DEPT. OF COMPUTER SCIENCE

YONSEI UNIVERSITY
Committee

Kyoungwoo Lee
Bernd Burgstaller
Yosub Han

= Motivation

= Related works

= Problem definition
= Method Proposal

= Experiments

= Conclusions

/18

= Motivation

/18

V hat is soft error?

= Soft Error? }

- -+
Transistor

— A phenomenon that the bit of the transistor is temporarily reversed
€ Assume that this transistor contains bit value 0
€ This transistor is attacked by external radiation
€ The external radiation makes some charges
€ The extra charges make the bit value to 1

— Soft error rate exponentially increase with technology scaling and
near-threshold computing

S,
o,
18T lab &
a7 a ¢

oft error is important

= Soft error is an increasing concern
— Soft error is a major threat to system reliability

— As computer systems are used more and more in industry and
life, soft error is becoming important

= |f soft error occurs in auto-driving car [2017, Li]

— Only 1 bit of soft error can lead to misclassification of objects
in DNN based vision technique

— Misclassification can result in the wrong action

Object Identified:
Transporting Truck g_tu;iect Identified:
1r

el Soft err akes
B misclassification
(truck — bird)

> *..,_;:u;

action

]
A
D
m i -
i N L

Q i"t 2
- | i
- e f e A
< ? RN
-— o
=

Q

oft error protection technique is required

= The progress of soft error protection
— Detect soft error occurrence
— Execute fault tolerance policy (correction, restart, rollback, etc..)
— Make the system to operate normally

* |Implement soft error protection

) 9)y @ = g,™s
s J $('?‘u-‘i,.:',

6/18

Hardware based technique

= Hardware based protection technique

— Redundant H/W to detect or correct errors
€ Requires additional hardware costs

— ECC(Error Correction Code) block on L1D (SEC-DED) [2006, chibani]
€ 215% increase runtime than unprotected one
€ 20% additional area occupancy and 300% more power consumption

= ECC protection example Aoanoss

. . . Encoding / Decoding
8 Data bits + 5 Parity bits logic| hardware

r | \WAWAWAWAWAWAWAW,
B : ENEAENE
PO P1 P2 P4 D2 D3 D4 P8 D5 De D7 D8
(overall)

1 bit error correction

PO will be wrong, P1,2,4,8 will be index of error
2 bit error detection

PO will be correct
4/18 Iab L\

oftware based technique

= Software based protection technique
— No additional hardware costs, flexible to apply and change

— SWIFT : Insert error detection code on program by
duplicating instructions [2005, reis]
€ 70% of errors detection coverage, 400% increase runtime

= SWIFT (Software Implemented Fault Tolerance) example

o SWIFT
Original Code
| oo 4] Varaible A r Duplication ‘
Variable A Duplication |5 Swmvr=res P /
Store R2, [Variable Result] Comparison Comparison
aad D2 Naciahia .
: 4 > Fault Detecion
Variable B | . 3
pad R2 Naciahla |
Store R3, [Variable C]

Variable B Duplication

SToTe R3; [Varrapre B\, >

Co?ripansbn
Fault Detecion

PUUN N
-\
(Y e
[= =)
/ 1 8 q ."-S“
a7 a ¢

Full protections are highly expensive

= H/W and S/W full protection are highly expensive
— Runtime overhead : at least 2 times slower
— May not be suitable for modern computer systems (low-power, loT)

= Selective protection
— All variable protection is expensive
— Only few variables are important, i.e., failure-critical

Original SWIFT
Variable A
Load R1, [Variable A]
R2 =R1 + 10
Store R2, [Variable I

Variable B
Load R2, [Variable B]

R3=R2+10 2

Store R3, [Variable C] = ki
Store R3, [Variable B]

Variable A is used for Result
(failure-critical)

Variable B is used for C
(not critical)

AN

elective protection : a cost effective way

= H/W and S/W full protection are highly expensive
— Runtime overhead : at least 2 times slower
— May not be suitable for modern computer systems (low-power, loT)

= Selective protection
— All variable protection is expensive
— Only few variables are important, i.e., failure-critical

Original SWIFT

Variable A o Lo [
Load R1, [Variable A] Duplication Selective
R2 =R1 + 10 Comparison protection
Store R2, [Variable > Store J
1
Variable B
U
Reduce cost
1
1

Load R2, [Variable B]
R3=R2 + 10
Store R3, [Variable C]

elective protection : a cost effective

= H/W and S/W technique are highly expensive
— Runtime overhead : at least 2 times slower
— May not be suitable for modern computer systems (low-power, loT)

= Selective protection
— All variable protection is expensive
— Just some of them are important, i.e., failure-critical

Selective
Full '+ protection

protection

Identification of

(Reduce cost)
important variables P

= ldr rl, [s
" cmp rl, roO

Selective protections on important variables
can be cost effective

/18

elective protection : a cost effective

= Selective protection example
— Mug cup with an invisible crack
— The cup will be broken if knock the cracked part
— Attaching the tapes to the only crack can prevent broken

Selective Protection Wi
(Effective and low cost)

75—, 8= &
i b

K’[We need to figure out where to be protected]'re)

P SN
& B
i e
> e
/18 N\
I

= Related works

— Method for finding where to protect in H/W
— Method for finding where to protect in S/W (Critical variables)

/18

H/W Vulnerability Measurement

= AVF(Architectural Vulnerability Factor) [2003, Mukherjee]

— Vulnerability : possibility that a fault in that particular structure
will result in an error

_ g write read
8 g ®f;ﬁt
= < » time
S X T T T T T T T 11
z 2| t0 £2 t7
Q

Fault is overwritten, not vulnerable
— Before reading after writing (t2 ~ t7) is vulnerable

— Weakness : accuracy (instruction unit), scalability (limited H/W)

= gemV toolset [2016, Tanikella]
— Improve accuracy and scalability
— Accuracy : CPU-cycle unit measurement (gem5 based)
— Scalability : supports various hardware and components
— Validation of vulnerability measurement by fault injection

/18

H/W Vulnerability Measurement

= AVF(Architectural Vulnerability Factor) [2003, Mukherjee]

— Vulnerability : possibility that a fault in that particular structure
will result in an error

W : error (can cause failure)
n write

o Y read

+ ' fault <

_ < » Time

oo =1 1 1 1 T 1

& = | t0 t2 t4 t7
- Vulnerable

— Before reading after writing (t2 ~ t7) is vulnerable
— Weakness : accuracy (instruction unit), scalability (limited H/W)

= gemV toolset [2016, Tanikella]
— Improve accuracy and scalability
— Accuracy : CPU-cycle unit measurement (gem5 based)
— Scalability : supports various hardware and components
— Validation of vulnerability measurement by fault injection

/18

S/W Vulnerability Measurement

= |dentification of Critical Variables using an FPGA-based
Fault Injection Framework [Riefert, 2013]

— The Critical variable : a variable that significantly affect on
program execution and calculation results (frequently used)

— In fault injection, critical variable will be highly injected
— Experiment : protecting 3 variables (Runtime 18% increase)

Number of errors Number of failures

[k B

decrease
49

88% decrease

no protection 3 variables proteciton | no protection 3 variables proteciton

— However, Fault injection it takes large of time to run fault
injection campaigns (at least 7,000 program run)
9 /18 |Gb

= Problem definition
— Finding critical variable(fault injection) takes a lot of time

/18

Fault Injection takes a lot of time

= Fault Injection method for finding critical variables

— Fault injection is a good technique for finding critical variables

— A large number of faults will be injected into the critical variables
— Protecting critical variable, effective protection method at low cost
— But, fault injection takes a lot of time

Fault injection 2nd Fault injection

time

Trace (variable where a fault|changed its value)

Variable A (Variable B]]

Register Data
Access

/18

Fault Injection takes a lot of time

= Fault Injection method for finding critical variables

— Fault injection is a good technique for finding critical variables
— A large number of faults will be injected into the critical variables
— Protecting critical variable, effective protection method at low cost

— But, fault injection takes a lot of time
N times fault injection ;

Register Data
Access

A (B A A (B A Variable

Count of faults = Variable A | : 4 Variable B J: 3 @ALIEENGN : 2
10 /18 Iab

= Method Proposal

— Since fault injection take lots of time, we develop an
alternative way to find out the critical variable

— The framework of variable vulnerability measurement with
LLVM compiler and gem5 simulator

/18

verview of our proposed technique

= Variable vulnerability method for finding critical variables

Source L], ® LLVM Variable < Register
Code "| Compiler | Allocation Information

@ Variable
lMachine Code Vulnerability = Critical
Measurement Variable List

® gém5 cpu-cycle information

simulator \/

(D Measures the vulnerability of variables that can cause an error
2 LLVM maps variables and register
3 gemb) calculates actual CPU-cycle for vulnerability

/18

V Varaible Vulnerability Measurement

“oode [T LLYM »>| Variable
1K Vul bilit » critical
= Fault and Vulnerability gems |»| Measurement | | L=rebe
. | : Variable A :!
— ' i (corrupted) : :
Variable A . (GOl ped) . can cause failure

read(store)

O

time

Fault @ Fault @ Fault ®

Register Data Access

/18

V Varaible Vulnerability Measurement

v

s?cl;écee LLVM > Variable
1 v Vulnerability [critical
u VUlnerable Per]Od gem5 [> Measurement variable

t Variable A iy

% 7

i i (corrupted) : can cause failure
g Variable A] = eeeenannd
O write read(store)
<
o
S time
a | I
" M
e
89” Vulnerable
ol

(faults in this period can cause failure)

Variable A' Vulnerability = t6 - t1 = 5 time units
118 lab O

V Varaible Vulnerability Measurement

source

Jovhe LLVM Variable _
= Requirement for measurement ” Vulnerability [e

gem5 > Measurement

v

t Variable A iy

m m— i ted) :
. Variable A i (corrupted) i can cause failure
(7]
Q
= read(store)
<
/% Problem A Problem B

Need to know which Need to know
variable is written {0 | <¢—————l actual CPU-cycle

the register Vulnerable
- _/in this period can cause failure)

Variable A' Vulnerability = t6 - t1 = 5 time units
118 lab O

V Mapping Register « Variables

== ANSWeT 1o probiem A
[(Which variable is written to the] “ode [TLLLYM_[>| Variable 8
. \ v Vulnerability —>{ critical
. ?ﬁ} - gem5 |» Measurement variable
= Modified LLVM Compiler
— Variables are assigned to registers during compile
) : C))
Source Code » Compiler » Machine Code
Variable Virtual Register

— Modify compiler to output variable«<register allocation information
— Machine code with variable name

Variable A Variable B

N
load RO, [sp+10] add R1, R2, RO mov RO, #10 store RO, [sp+14]
| ‘ | I
1 1 | | L 1T T 1
t0 t4 t7 t11

Variable A Variable B

/18

time

RO Data Access

V Actual vulnerable period cpu

=~ Answer to problem B
need to know actual CPU-cycle

= gemb calculate CPU-cycle

source
code

v

LLVM ' variable
v Vulnerability
gem5 Measurement

»{ critical
variable

— Although the number of instructions is the same,
the actual vulnerable time may be different

w1 load RO, [sp+10] add R1, R2, RO mov RO, #10 store RO, [sp+14]
: l 1 l 1
<
S time
= I 1 T 1 1 1 T 1
S t0 t4 t7 t11
ﬁ M
& 4 Instruction (1000 cycle) 4 Instruction (2000 cycle)
Variable A [\ariahleR]
4)

_

With our fl"ameWOI‘k(vuInerabiIity measurement with LLVM and gem5),
Now we can calculate variable vulnerability clearly

/18T lab &

= Experiments

— Validate our vulnerability based framework with
fault injection campaigns

/18

Experiments

= Validation

— Are variables with high vulnerability be more fault injected?

— Can assume variable with a high vulnerability is a critical
variable?

= Fault injection experiment setup
— Benchmark : 6 programs (MiBench version 1.0)
— 4,000 times fault injection for each benchmark
— gemV toolset is used for fault injection experiment
— Trace faults and analysis result (normal, SDC, system HALT)

(g Fault Injection Campaigns ~
ce

Bench #1 failure

(SDC, Halt)

A UNJ N
5
T lab &Y

o

Stringsearch variables vulnerability, fault and farilure rate

: 7% B Vulnerability (%) ® Fault(%) B Failure (%)
: 74°

69% E ()

« 2 variables(1.5%) have 94% of the vulnerability

« The Vulnerability is a good fit for a fault occur
\- 2 variables protection can remove 79% of failure)

3%-
l*% 2% 2% 2% >% 2%
N . - _ _-I — —_— - _ -n -I -1 _ -

v7 v8 v9 v10 vi1 vi12 v13 vi4 v15 vi6 v17 vi8 v19 v20 v21 v22 v23 v24 v25 ~ 135

* Variables are sorted in descending order of vulnerability.

16 / 18 Iab

esult : Find critical variable with vulnerablity

Top 5 high Vulnerablity variables and faiure rate
80% B Vulnerablity (%) = Fault (%) B Failure (%)

4)
« Top 3 high vulnerability variablesjhave 67% of the fault

and 68% of failure

S \- Protecting 3 high variables can remove 68% of failure y

20%

basicmath stringsearch crc sha susan_e gsort

* Variables are sorted in descending order of vulnerability.

17 /18

= Conclusions

/18

= Conclusion

Soft error is an important concern

H/W and S/W full protection is expensive

Need to identify the critical variables for selective protections
€ The higher the variable vulnerability, more faults are injected

We propose a framework for critical variable identifications with
vulnerability measurement

€ Modeling vulnerability of variable
€ Early estimation of critical variables (without fault injection)

In the experiment, only protecting top 3 vulnerable variables,
68% failures can be removed (3 variable are critical variable)

Provide protection priority for selective technique

= Future work

There is a difference between variable vulnerability and failure
(Masking effect : not all faults cause failure)
Research to minimize the difference caused by masking effect

o NI}
L
e e\
=i e
/ 1 8 Iq b .l..a Z
ot

