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 Soft Error?

– A phenomenon that the bit of the transistor is temporarily reversed

 Assume that this transistor contains bit value 0

 This transistor is attacked by external radiation

 The external radiation makes some charges 

 The extra charges make the bit value to 1

– Soft error rate exponentially increase with technology scaling and

near-threshold computing

What is soft error?
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 Soft error is an increasing concern
– Soft error is a major threat to system reliability

– As computer systems are used more and more in industry and 
life, soft error is becoming important

 If soft error occurs in auto-driving car [2017, Li]

– Only 1 bit of soft error can lead to misclassification of objects 
in DNN based vision technique 

– Misclassification can result in the wrong action

Soft error is important

3

action = brake action = keep driving
(collision)

Soft error makes
misclassification
(truck → bird)
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Soft error protection technique is required

6

 The progress of soft error protection

– Detect soft error occurrence

– Execute fault tolerance policy (correction, restart, rollback, etc..)

– Make the system to operate normally

 Implement soft error protection 

H/W based technique S/W based technique
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Hardware based technique

4

 Hardware based protection technique
– Redundant H/W to detect or correct errors 

 Requires additional hardware costs

– ECC(Error Correction Code) block on L1D (SEC-DED) [2006, chibani]

 215% increase runtime than unprotected one

 20% additional area occupancy and 300% more power consumption

 ECC protection example

0 0 1 1 0 0 11 1 0 1

P0 P1 P2 P4 P8

1

8 Data bits  + 5 Parity bits

1 bit error correction = P0 will be wrong, P1,2,4,8 will be index of error 
2 bit error detection  = P0 will be correct

D1 D2 D3 D4 D5 D6 D7 D8
(overall)

0

Encoding / Decoding
logic hardware
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Software based technique

5

Duplication
Comparison

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 10

Store R3, [Variable C]

Store R2, [Variable Result]

Load R2, [Variable B]

Load R1', [Variable A']

R2' = R1 + 10

Store R2', [Variable Result']

R3' = R2' + 5

Store R3', [Variable B']

Load R2', [Variable B']

Duplication

Duplication

Variable A

Variable B

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 5

Store R3, [Variable B]

Store R2, [Variable Result]

Load R2, [Variable B]

Varaible A

Variable B

CMP R1, R1'

Cmp R3, R3'

br faultDetection

br faultDetection

Comparison 
(Fault Detecion)

Comparison
(Fault Detecion)

Original Code
SWIFT

 Software based protection technique

– No additional hardware costs, flexible to apply and change

– SWIFT : Insert error detection code on program by 

duplicating  instructions [2005, reis]

 70% of errors detection coverage, 400% increase runtime

 SWIFT (Software Implemented Fault Tolerance) example
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 H/W and S/W full protection are highly expensive
– Runtime overhead : at least 2 times slower 

– May not be suitable for modern computer systems (low-power, IoT)

 Selective protection 
– All variable protection is expensive

– Only few variables are important, i.e., failure-critical 

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 10

Store R3, [Variable C]

Store R2, [Variable Result]

Load R2, [Variable B]

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 5

Store R3, [Variable B]

Store R2, [Variable Result]

Load R2, [Variable B]

Load R1', [Variable A']

R2' = R1 + 10

Store R2', [Variable Result']

R3' = R2' + 5

Store R3', [Variable B']

Load R2', [Variable B']

CMP R1, R1'

Cmp R3, R3'

br faultDetection

br faultDetection

SWIFT

Variable A

Variable B Variable B is used for C
(not critical)

Full protections are highly expensive

Original

Duplication
Comparison

Variable A is used for Result 
(failure-critical)
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 H/W and S/W full protection are highly expensive
– Runtime overhead : at least 2 times slower 

– May not be suitable for modern computer systems (low-power, IoT)

 Selective protection 
– All variable protection is expensive

– Only few variables are important, i.e., failure-critical 

R3' = R2' + 5

Store R3', [Variable B']

Load R2', [Variable B']

Cmp R3, R3'

br faultDetection

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 10

Store R3, [Variable C]

Store R2, [Variable 
Result]

Load R2, [Variable B]

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 5

Store R3, [Variable B]

Store R2, [Variable Result]

Load R2, [Variable B]

Load R1', [Variable A']

R2' = R1 + 10

Store R2', [Variable Result']

CMP R1, R1'

br faultDetection

Variable A

Variable B

Selective 
protection

Reduce cost

Selective protection : a cost effective way

SWIFTOriginal

Duplication
Comparison
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Full 
protection

Selective 
protection

Important

Selective protections on important variables 
can be cost effective

(Reduce cost)

Selective protection : a cost effective

Identification of
important variables

 H/W and S/W technique are highly expensive
– Runtime overhead : at least 2 times slower 

– May not be suitable for modern computer systems (low-power, IoT)

 Selective protection 
– All variable protection is expensive

– Just some of them are important, i.e., failure-critical 
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CUP(System) Broken(Failure)Knock(Fault)

 Selective protection example

– Mug cup with an invisible crack

– The cup will be broken if knock the cracked part

– Attaching the tapes to the only crack can prevent broken

Not Broekn

Selective Protection
(Effective and low cost)

We need to figure out where to be protected

Selective protection : a cost effective
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H/W Vulnerability Measurement

8

 AVF(Architectural Vulnerability Factor) [2003, Mukherjee]

– Vulnerability : possibility that a fault in that particular structure 
will result in an error

– Before reading after writing (t2 ~ t7) is vulnerable 

– Weakness : accuracy (instruction unit), scalability (limited H/W)

 gemV toolset [2016, Tanikella] 

– Improve accuracy and scalability

– Accuracy : CPU-cycle unit measurement (gem5 based)

– Scalability : supports various hardware and components

– Validation of vulnerability measurement by fault injection

Fault is overwritten, not vulnerable 

write read

time

R
e
g
is

te
r

D
a
ta

 A
c
c
e
ss

 

① fault

t0 t2 t7
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H/W Vulnerability Measurement

8

write
read

time

R
e
g
is

te
r

D
a
ta

 A
c
c
e
ss

 

t0 t2 t7

② fault

error (can cause failure)

Vulnerable

t4

 AVF(Architectural Vulnerability Factor) [2003, Mukherjee]

– Vulnerability : possibility that a fault in that particular structure 
will result in an error

– Before reading after writing (t2 ~ t7) is vulnerable 

– Weakness : accuracy (instruction unit), scalability (limited H/W)

 gemV toolset [2016, Tanikella] 

– Improve accuracy and scalability

– Accuracy : CPU-cycle unit measurement (gem5 based)

– Scalability : supports various hardware and components

– Validation of vulnerability measurement by fault injection
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 Identification of Critical Variables using an FPGA-based 

Fault Injection Framework [Riefert, 2013]

– The Critical variable : a variable that significantly affect on 

program execution and calculation results (frequently used) 

– In fault injection, critical variable will be highly injected    

– Experiment : protecting 3 variables (Runtime 18% increase)

– However, Fault injection it takes large of time to run fault 

injection campaigns (at least 7,000 program run)
9

S/W Vulnerability Measurement

9

1

no protection 3 variables proteciton

Number of failures

failure 88% decrease

95

49

no protection 3 variables proteciton

Number of errors

error 51% decrease
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 Fault Injection method for finding critical variables

– Fault injection is a good technique for finding critical variables

– A large number of faults will be injected into the critical variables

– Protecting critical variable, effective protection method at low cost 

– But, fault injection takes a lot of time

10

Variable A

time

R
e
g
is

te
r 

D
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ta

 
A
cc

e
ss

Trace (variable where a fault changed its value)

Fault injection 

Fault Injection takes a lot of time

Variable B

2nd Fault injection 
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Fault Injection takes a lot of time

10

Variable ACount of faults =                        : 4                     : 3                     : 2Variable B Variable C

R
e
g
is

te
r 

D
a
ta

 
A

cc
e
ss

A B A B CAC A Variable

Runtime
( x N )

N times fault injection 

 Fault Injection method for finding critical variables

– Fault injection is a good technique for finding critical variables

– A large number of faults will be injected into the critical variables

– Protecting critical variable, effective protection method at low cost 

– But, fault injection takes a lot of time
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 Variable vulnerability method for finding critical variables

① Measures the vulnerability of variables that can cause an error

② LLVM maps variables and register

③ gem5 calculates actual CPU-cycle for vulnerability 

11

Source 
Code

② LLVM 
Compiler

③ gem5 
simulator

Machine Code

Variable ↔ Register 
Allocation Information

cpu-cycle information

① Variable
Vulnerability 
Measurement

Critical 
Variable List

Overview of our proposed technique
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t1

① Varaible Vulnerability Measurement

12

 Fault and Vulnerability

read(store)

R
e
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is

te
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D
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ta

 A
c
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ss

 

write

time

Variable A

Variable A

Fault ①

t0 t6

Fault ③

t7

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical 
variable

can cause failure

Fault ②

t4

Variable A
(corrupted)
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① Varaible Vulnerability Measurement

t1

read(store)

R
e
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D
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time

can cause failure

Variable A
(corrupted)

t0 t4 t6

write

Variable A

 Vulnerable Period

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical 
variable

Vulnerable
(faults in this period can cause failure)

Variable A' Vulnerability = t6 - t1 = 5 time units
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 Requirement for measurement

12

① Varaible Vulnerability Measurement

t1

read(store)

R
e
g
is

te
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D
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 A
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time

can cause failure

Variable A
(corrupted)

t0 t6

write

Variable A

Vulnerable
(faults in this period can cause failure)

Variable A' Vulnerability = t6 - t1 = 5 time units

Need to know which 
variable is written to 

the register

Problem A

Need to know 
actual CPU-cycle

Problem B

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical 
variable
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 Modified LLVM Compiler

– Variables are assigned to registers during compile

– Modify compiler to output variable↔register allocation information

– Machine code with variable name

② Mapping Register ↔ Variables

13

R
0

D
a
ta

 A
c
c
e
ss

 load R0, [sp+10] store R0, [sp+14]add R1, R2, R0 mov R0, #10

Variable A

Variable A

Variable B

Variable B

time

t0 t4 t7 t11

Compiler

Virtual RegisterVariable

Source Code

Register

Machine Code

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical 
variable

☞ Answer to problem A

(Which variable is written to the 
register)
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 gem5 calculate CPU-cycle

– Although the number of instructions is the same, 

the actual vulnerable time may be different

– Run the machine code on the gem5 

– Calculate actual CPU-cycle of the variable vulnerable time

③ Actual vulnerable period cpu-cycle

14

R
0

D
a
ta

 A
c
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ss

 

load R0, [sp+10] store R0, [sp+14]add R1, R2, R0

Variable A

mov R0, #10

Variable B

4 Instruction (1000 cycle) 4 Instruction (2000 cycle)

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical 
variable

time

t0 t4 t7 t11

☞ Answer to problem B 

(need to know actual CPU-cycle)

With our framework(vulnerability measurement with LLVM and gem5),

Now we can calculate variable vulnerability clearly
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 Conclusions
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fault 

Experiments

15

 Validation

– Are variables with high vulnerability be more fault injected?

– Can assume variable with a high vulnerability is a critical 

variable?

 Fault injection experiment setup

– Benchmark : 6 programs (MiBench version 1.0)

– 4,000 times fault injection for each benchmark

– gemV toolset is used for fault injection experiment

– Trace faults and analysis result (normal, SDC, system HALT)

Fault Injection Campaigns

Fault 
generator

failure
(SDC, Halt)

fault
Bench #1

error Failure
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Result : Vulnerablity method fit a fault occur

16

~ 135

74%

21%

69%

23%

77%

2% 2%
5%

2%
5%

2%

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25

Stringsearch variables vulnerability, fault and farilure rate

Vulnerability Fault Failure

• 2 variables(1.5%) have 94% of the vulnerability
• The Vulnerability is a good fit for a fault occur
• 2 variables protection can remove 79% of failure 

(%)(%)(%)

* Variables are sorted in descending order of vulnerability.
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v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

basicmath stringsearch crc sha susan_e qsort

Top 5 high Vulnerablity variables and faiure rate

Vulnerablity Fault Failure

50%

20%

80%

Result : Find critical variable with vulnerablity

• Top 3 high vulnerability variables have 67% of the fault
and 68% of failure

• Protecting 3 high variables can remove 68% of failure

(%) (%) (%)

* Variables are sorted in descending order of vulnerability.
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 Conclusion
– Soft error is an important concern

– H/W and S/W full protection is expensive 

– Need to identify the critical variables for selective protections
 The higher the variable vulnerability, more faults are injected

– We propose a framework for critical variable identifications with 
vulnerability measurement
 Modeling vulnerability of variable

 Early estimation of critical variables (without fault injection)

– In the experiment, only protecting top 3 vulnerable variables, 
68% failures can be removed (3 variable are critical variable)

– Provide protection priority for selective technique

 Future work
– There is a difference between variable vulnerability and failure

(Masking effect : not all faults cause failure)

– Research to minimize the difference caused by masking effect

Conclusion

18


