
Dependable Computing Lab.
Dept. of Computer Science

Yonsei University

Critical Variable Identifications using Register

Vulnerability for Selective Protections

October 19th, 2018

Dukui Song

Committee
Kyoungwoo Lee

Bernd Burgstaller
Yosub Han

/ 18

Agenda

1

 Motivation

 Related works

 Problem definition

 Method Proposal

 Experiments

 Conclusions

/ 18

Agenda

1

 Motivation

 Related works

 Problem definition

 Method Proposal

 Experiments

 Conclusions

/ 18

 Soft Error?

– A phenomenon that the bit of the transistor is temporarily reversed

 Assume that this transistor contains bit value 0

 This transistor is attacked by external radiation

 The external radiation makes some charges

 The extra charges make the bit value to 1

– Soft error rate exponentially increase with technology scaling and

near-threshold computing

What is soft error?

2

+
- +
+
+--

-

Transistor

source drain

10

/ 18

 Soft error is an increasing concern
– Soft error is a major threat to system reliability

– As computer systems are used more and more in industry and
life, soft error is becoming important

 If soft error occurs in auto-driving car [2017, Li]

– Only 1 bit of soft error can lead to misclassification of objects
in DNN based vision technique

– Misclassification can result in the wrong action

Soft error is important

3

action = brake action = keep driving
(collision)

Soft error makes
misclassification
(truck → bird)

/ 18

Soft error protection technique is required

6

 The progress of soft error protection

– Detect soft error occurrence

– Execute fault tolerance policy (correction, restart, rollback, etc..)

– Make the system to operate normally

 Implement soft error protection

H/W based technique S/W based technique

/ 18

Hardware based technique

4

 Hardware based protection technique
– Redundant H/W to detect or correct errors

 Requires additional hardware costs

– ECC(Error Correction Code) block on L1D (SEC-DED) [2006, chibani]

 215% increase runtime than unprotected one

 20% additional area occupancy and 300% more power consumption

 ECC protection example

0 0 1 1 0 0 11 1 0 1

P0 P1 P2 P4 P8

1

8 Data bits + 5 Parity bits

1 bit error correction = P0 will be wrong, P1,2,4,8 will be index of error
2 bit error detection = P0 will be correct

D1 D2 D3 D4 D5 D6 D7 D8
(overall)

0

Encoding / Decoding
logic hardware

/ 18

Software based technique

5

Duplication
Comparison

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 10

Store R3, [Variable C]

Store R2, [Variable Result]

Load R2, [Variable B]

Load R1', [Variable A']

R2' = R1 + 10

Store R2', [Variable Result']

R3' = R2' + 5

Store R3', [Variable B']

Load R2', [Variable B']

Duplication

Duplication

Variable A

Variable B

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 5

Store R3, [Variable B]

Store R2, [Variable Result]

Load R2, [Variable B]

Varaible A

Variable B

CMP R1, R1'

Cmp R3, R3'

br faultDetection

br faultDetection

Comparison
(Fault Detecion)

Comparison
(Fault Detecion)

Original Code
SWIFT

 Software based protection technique

– No additional hardware costs, flexible to apply and change

– SWIFT : Insert error detection code on program by

duplicating instructions [2005, reis]

 70% of errors detection coverage, 400% increase runtime

 SWIFT (Software Implemented Fault Tolerance) example

/ 18

 H/W and S/W full protection are highly expensive
– Runtime overhead : at least 2 times slower

– May not be suitable for modern computer systems (low-power, IoT)

 Selective protection
– All variable protection is expensive

– Only few variables are important, i.e., failure-critical

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 10

Store R3, [Variable C]

Store R2, [Variable Result]

Load R2, [Variable B]

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 5

Store R3, [Variable B]

Store R2, [Variable Result]

Load R2, [Variable B]

Load R1', [Variable A']

R2' = R1 + 10

Store R2', [Variable Result']

R3' = R2' + 5

Store R3', [Variable B']

Load R2', [Variable B']

CMP R1, R1'

Cmp R3, R3'

br faultDetection

br faultDetection

SWIFT

Variable A

Variable B Variable B is used for C
(not critical)

Full protections are highly expensive

Original

Duplication
Comparison

Variable A is used for Result
(failure-critical)

/ 18

 H/W and S/W full protection are highly expensive
– Runtime overhead : at least 2 times slower

– May not be suitable for modern computer systems (low-power, IoT)

 Selective protection
– All variable protection is expensive

– Only few variables are important, i.e., failure-critical

R3' = R2' + 5

Store R3', [Variable B']

Load R2', [Variable B']

Cmp R3, R3'

br faultDetection

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 10

Store R3, [Variable C]

Store R2, [Variable
Result]

Load R2, [Variable B]

Load R1, [Variable A]

R2 = R1 + 10

R3 = R2 + 5

Store R3, [Variable B]

Store R2, [Variable Result]

Load R2, [Variable B]

Load R1', [Variable A']

R2' = R1 + 10

Store R2', [Variable Result']

CMP R1, R1'

br faultDetection

Variable A

Variable B

Selective
protection

Reduce cost

Selective protection : a cost effective way

SWIFTOriginal

Duplication
Comparison

/ 186

Full
protection

Selective
protection

Important

Selective protections on important variables
can be cost effective

(Reduce cost)

Selective protection : a cost effective

Identification of
important variables

 H/W and S/W technique are highly expensive
– Runtime overhead : at least 2 times slower

– May not be suitable for modern computer systems (low-power, IoT)

 Selective protection
– All variable protection is expensive

– Just some of them are important, i.e., failure-critical

/ 187

CUP(System) Broken(Failure)Knock(Fault)

 Selective protection example

– Mug cup with an invisible crack

– The cup will be broken if knock the cracked part

– Attaching the tapes to the only crack can prevent broken

Not Broekn

Selective Protection
(Effective and low cost)

We need to figure out where to be protected

Selective protection : a cost effective

/ 18

Agenda

7

 Motivation

 Related works
– Method for finding where to protect in H/W

– Method for finding where to protect in S/W (Critical variables)

 Problem definition

 Method Proposal

 Experiments

 Conclusions

/ 18

H/W Vulnerability Measurement

8

 AVF(Architectural Vulnerability Factor) [2003, Mukherjee]

– Vulnerability : possibility that a fault in that particular structure
will result in an error

– Before reading after writing (t2 ~ t7) is vulnerable

– Weakness : accuracy (instruction unit), scalability (limited H/W)

 gemV toolset [2016, Tanikella]

– Improve accuracy and scalability

– Accuracy : CPU-cycle unit measurement (gem5 based)

– Scalability : supports various hardware and components

– Validation of vulnerability measurement by fault injection

Fault is overwritten, not vulnerable

write read

time

R
e
g
is

te
r

D
a
ta

 A
c
c
e
ss

① fault

t0 t2 t7

/ 18

H/W Vulnerability Measurement

8

write
read

time

R
e
g
is

te
r

D
a
ta

 A
c
c
e
ss

t0 t2 t7

② fault

error (can cause failure)

Vulnerable

t4

 AVF(Architectural Vulnerability Factor) [2003, Mukherjee]

– Vulnerability : possibility that a fault in that particular structure
will result in an error

– Before reading after writing (t2 ~ t7) is vulnerable

– Weakness : accuracy (instruction unit), scalability (limited H/W)

 gemV toolset [2016, Tanikella]

– Improve accuracy and scalability

– Accuracy : CPU-cycle unit measurement (gem5 based)

– Scalability : supports various hardware and components

– Validation of vulnerability measurement by fault injection

/ 18

 Identification of Critical Variables using an FPGA-based

Fault Injection Framework [Riefert, 2013]

– The Critical variable : a variable that significantly affect on

program execution and calculation results (frequently used)

– In fault injection, critical variable will be highly injected

– Experiment : protecting 3 variables (Runtime 18% increase)

– However, Fault injection it takes large of time to run fault

injection campaigns (at least 7,000 program run)
9

S/W Vulnerability Measurement

9

1

no protection 3 variables proteciton

Number of failures

failure 88% decrease

95

49

no protection 3 variables proteciton

Number of errors

error 51% decrease

/ 18

Agenda

9

 Motivation

 Related works

 Problem definition
– Finding critical variable(fault injection) takes a lot of time

 Method Proposal

 Experiments

 Conclusions

/ 18

 Fault Injection method for finding critical variables

– Fault injection is a good technique for finding critical variables

– A large number of faults will be injected into the critical variables

– Protecting critical variable, effective protection method at low cost

– But, fault injection takes a lot of time

10

Variable A

time

R
e
g
is

te
r

D
a
ta

A
cc

e
ss

Trace (variable where a fault changed its value)

Fault injection

Fault Injection takes a lot of time

Variable B

2nd Fault injection

/ 18

Fault Injection takes a lot of time

10

Variable ACount of faults = : 4 : 3 : 2Variable B Variable C

R
e
g
is

te
r

D
a
ta

A

cc
e
ss

A B A B CAC A Variable

Runtime
(x N)

N times fault injection

 Fault Injection method for finding critical variables

– Fault injection is a good technique for finding critical variables

– A large number of faults will be injected into the critical variables

– Protecting critical variable, effective protection method at low cost

– But, fault injection takes a lot of time

/ 18

Agenda

10

 Motivation

 Related works

 Problem definition

 Method Proposal

– Since fault injection take lots of time, we develop an

alternative way to find out the critical variable

– The framework of variable vulnerability measurement with

LLVM compiler and gem5 simulator

 Experiments

 Conclusions

/ 18

 Variable vulnerability method for finding critical variables

① Measures the vulnerability of variables that can cause an error

② LLVM maps variables and register

③ gem5 calculates actual CPU-cycle for vulnerability

11

Source
Code

② LLVM
Compiler

③ gem5
simulator

Machine Code

Variable ↔ Register
Allocation Information

cpu-cycle information

① Variable
Vulnerability
Measurement

Critical
Variable List

Overview of our proposed technique

/ 18

t1

① Varaible Vulnerability Measurement

12

 Fault and Vulnerability

read(store)

R
e
g
is

te
r

D
a
ta

 A
c
c
e
ss

write

time

Variable A

Variable A

Fault ①

t0 t6

Fault ③

t7

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical
variable

can cause failure

Fault ②

t4

Variable A
(corrupted)

/ 1812

① Varaible Vulnerability Measurement

t1

read(store)

R
e
g
is

te
r

D
a
ta

 A
c
c
e
ss

time

can cause failure

Variable A
(corrupted)

t0 t4 t6

write

Variable A

 Vulnerable Period

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical
variable

Vulnerable
(faults in this period can cause failure)

Variable A' Vulnerability = t6 - t1 = 5 time units

/ 18

 Requirement for measurement

12

① Varaible Vulnerability Measurement

t1

read(store)

R
e
g
is

te
r

D
a
ta

 A
c
c
e
ss

time

can cause failure

Variable A
(corrupted)

t0 t6

write

Variable A

Vulnerable
(faults in this period can cause failure)

Variable A' Vulnerability = t6 - t1 = 5 time units

Need to know which
variable is written to

the register

Problem A

Need to know
actual CPU-cycle

Problem B

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical
variable

/ 18

 Modified LLVM Compiler

– Variables are assigned to registers during compile

– Modify compiler to output variable↔register allocation information

– Machine code with variable name

② Mapping Register ↔ Variables

13

R
0

D
a
ta

 A
c
c
e
ss

 load R0, [sp+10] store R0, [sp+14]add R1, R2, R0 mov R0, #10

Variable A

Variable A

Variable B

Variable B

time

t0 t4 t7 t11

Compiler

Virtual RegisterVariable

Source Code

Register

Machine Code

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical
variable

☞ Answer to problem A

(Which variable is written to the
register)

/ 18

 gem5 calculate CPU-cycle

– Although the number of instructions is the same,

the actual vulnerable time may be different

– Run the machine code on the gem5

– Calculate actual CPU-cycle of the variable vulnerable time

③ Actual vulnerable period cpu-cycle

14

R
0

D
a
ta

 A
c
c
e
ss

load R0, [sp+10] store R0, [sp+14]add R1, R2, R0

Variable A

mov R0, #10

Variable B

4 Instruction (1000 cycle) 4 Instruction (2000 cycle)

source
code

LLVM

gem5

Variable
Vulnerability
Measurement

critical
variable

time

t0 t4 t7 t11

☞ Answer to problem B

(need to know actual CPU-cycle)

With our framework(vulnerability measurement with LLVM and gem5),

Now we can calculate variable vulnerability clearly

/ 18

Agenda

14

 Motivation

 Related works

 Problem definition

 Method Proposal

 Experiments

– Validate our vulnerability based framework with

fault injection campaigns

 Conclusions

/ 18

fault

Experiments

15

 Validation

– Are variables with high vulnerability be more fault injected?

– Can assume variable with a high vulnerability is a critical

variable?

 Fault injection experiment setup

– Benchmark : 6 programs (MiBench version 1.0)

– 4,000 times fault injection for each benchmark

– gemV toolset is used for fault injection experiment

– Trace faults and analysis result (normal, SDC, system HALT)

Fault Injection Campaigns

Fault
generator

failure
(SDC, Halt)

fault
Bench #1

error Failure

/ 18

Result : Vulnerablity method fit a fault occur

16

~ 135

74%

21%

69%

23%

77%

2% 2%
5%

2%
5%

2%

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25

Stringsearch variables vulnerability, fault and farilure rate

Vulnerability Fault Failure

• 2 variables(1.5%) have 94% of the vulnerability
• The Vulnerability is a good fit for a fault occur
• 2 variables protection can remove 79% of failure

(%)(%)(%)

* Variables are sorted in descending order of vulnerability.

/ 1817

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

basicmath stringsearch crc sha susan_e qsort

Top 5 high Vulnerablity variables and faiure rate

Vulnerablity Fault Failure

50%

20%

80%

Result : Find critical variable with vulnerablity

• Top 3 high vulnerability variables have 67% of the fault
and 68% of failure

• Protecting 3 high variables can remove 68% of failure

(%) (%) (%)

* Variables are sorted in descending order of vulnerability.

/ 18

Agenda

17

 Motivation

 Related works

 Problem definition

 Method Proposal

 Experiments

 Conclusions

/ 18

 Conclusion
– Soft error is an important concern

– H/W and S/W full protection is expensive

– Need to identify the critical variables for selective protections
 The higher the variable vulnerability, more faults are injected

– We propose a framework for critical variable identifications with
vulnerability measurement
 Modeling vulnerability of variable

 Early estimation of critical variables (without fault injection)

– In the experiment, only protecting top 3 vulnerable variables,
68% failures can be removed (3 variable are critical variable)

– Provide protection priority for selective technique

 Future work
– There is a difference between variable vulnerability and failure

(Masking effect : not all faults cause failure)

– Research to minimize the difference caused by masking effect

Conclusion

18

